Molecular basis of vitamin E action. Tocotrienol potently inhibits glutamate-induced pp60 (c-Src) kinase activation and death of HT4 neuronal cells

Sen CK, Khanna S, Roy S, Packer L.

J Biol Chem. 2000 Apr 28;275(17):13049-55.

HT4 hippocampal neuronal cells were studied to compare the efficacy of tocopherols and tocotrienol to protect against glutamate-induced death.Tocotrienols were more effective than alpha-tocopherol in preventing glutamate-induced death. Uptake of tocotrienols from the culture medium was more efficient compared with that of alpha-tocopherol. Vitamin E molecules have potent antioxidant properties. Results show that at low concentrations, tocotrienols may have protected cells by an antioxidant-independent mechanism. Examination of signal transduction pathways revealed that protein tyrosine phosphorylation processes played a central role in the execution of death. Activation of pp60(c-Src) kinase and phosphorylation of ERK were observed in response to glutamate treatment. Nanomolar amounts of alpha-tocotrienol, but not alpha-tocopherol, blocked glutamate-induced death by suppressing glutamate-induced early activation of c-Src kinase. Overexpression of kinase-active c-Src sensitized cells to glutamate-induced death. Tocotrienol treatment prevented death of Src-overexpressing cells treated with glutamate. alpha-Tocotrienol did not influence activity of recombinant c-Src kinase suggesting that its mechanism of action may include regulation of SH domains. This study provides first evidence describing the molecular basis of tocotrienol action. At a concentration 4-10-fold lower than levels detected in plasma of supplemented humans, tocotrienol regulated unique signal transduction processes that were not sensitive to comparable concentrations of tocopherol.

Read Full Article Here

Page 1 of 11