The Effects of Tocotrienols Added to Canola Oil on Microalbuminuria, Inflammation, and Nitrosative Stress in Patients with Type 2 Diabetes: A Randomized, Double-blind, Placebo-controlled Trial.

Haghighat N, Vafa M, Eghtesadi S, Heidari I, Hosseini A, Rostami A.

BACKGROUND:

Tocotrienols (T3) were neglected in the past; today, get attentions due to their antioxidant and none-antioxidant activity. The objective of this study was to evaluate the effects of the daily intake of 200 mg T3 added in canola oil over 8 weeks on microalbuminuria, inflammation, and nitrosative stress in type 2 diabetic patients.

METHODS:

This study was a double-blinded, placebo-controlled, randomized trial. A total of 50 patients with T2DM and FBS >126 mg/dl treated by non-insulin hypoglycemic drugs were randomly assigned to receive either 15 ml T3-enriched canola oil (200 mg/day T3) or pure canola oil for 8 weeks. Urine microalbumin, volume and creatinine levels, serum hs-CRP, and nitric oxide (NO) levels were measured before and after intervention.

RESULTS:

From 50 patients participated in this study, 44 completed the study. There were no significant differences in baseline characteristics, dietary intake, and physical activity between groups. Urine microalbumin and serum hs-CRP were declined significantly in T3-treated group. At the end of the study, patients who treated with T3 had lower urine microalbumin (11 (9, 25) vs. 22 (15, 39.75) nmol/dl, P = 0.003) and hs-CRP changes (-10.91 ± 15.5 vs. -9.88 ± 27.5 Pg/ml, P = 0.048) than control group. A non-significant decrease was also observed in serum NO level in T3-treated group with no changes in urine volume and creatinine levels.

CONCLUSIONS:

These findings indicate that T3 leads to ameliorate proteinuria and can protect the kidney against inflammation (hs-CRP) and nitrosative stress (NO).

Read more

Enhanced Solubility and Oral Bioavailability of γ-Tocotrienol Using a Self-Emulsifying Drug Delivery System (SEDDS).

Alqahtani S, Alayoubi A, Nazzal S, Sylvester PW, Kaddoumi A.

The aim of this study was to evaluate the in vitro and in vivo performance of γ-tocotrienol (γ-T3) incorporated in a self-emulsifying drug delivery system (SEDDS) and to compare its enhanced performance to a commercially available product, namely Tocovid Suprabio™ (hereafter Tocovid), containing tocotrienols. The solubilization of γ-T3 was tested in a dynamic in vitro lipolysis model followed by in vitro cellular uptake study for the lipolysis products. In addition, in vitro uptake studies using Caco2 cells were conducted at different concentrations of γ-T3 prepared as SEDDS, Tocovid, or mixed micelles. γ-T3 incorporated in SEDDS or Tocovid was orally administered to rats at different doses and absolute oral bioavailability from both formulations were determined. The dynamic in vitro lipolysis experiment showed about two fold increase in the solubilization of γ-T3 prepared as SEDDS compared to Tocovid, which correlated with higher cellular uptake in the subsequent uptake studies. In vitro cellular uptake and in vivo oral bioavailability studies have shown a twofold increase in the cellular uptake and oral bioavailability of γ-T3 incorporated in SEDDS compared to Tocovid as a result of improvement in its solubility and passive uptake as confirmed by in vitro studies. In conclusion, incorporation of γ-T3 in SEDDS formulation enhanced γ-T3 solubilization and passive permeability, thus its cellular uptake and oral bioavailability when compared to Tocovid.

Read more

Effects of topically applied tocotrienol on cataractogenesis and lens redox status in galactosemic rats.

Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM.

PURPOSE:

Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats.

METHODS:

In the first part of this study, we investigated the effects of topically applied microemulsion formulation of tocotrienol (TTE) using six concentrations ranging from 0.01% to 0.2%. Eight groups of Sprague-Dawley rats (n = 9) received distilled water, vehicle, or one of the six TTE concentrations as pretreatment topically twice daily for 3 weeks while on a normal diet. After pretreatment, animals in groups 2-8 received a 25% galactose diet whereas group 1 continued on the normal diet for 4 weeks. During this 4-week period, topical treatment continued as for pretreatment. Weekly slit-lamp examination was conducted to assess cataract progression. At the end of the experimental period, the animals were euthanized, and the proteins and oxidative stress parameters were estimated in the lenses. In the second part of the study, we compared the anticataract efficacy of the TTE with the liposomal formulation of tocotrienol (TTL) using five groups of Sprague-Dawley rats (n = 15) that received distilled water, TTE, TTL, or corresponding vehicle. The mode of administration and dosing schedule were the same as in study 1. Weekly ophthalmic examination and lens protein and oxidative stress estimates were performed as in study 1. Lens nitrosative stress was also estimated.

RESULTS:

During the 4-week treatment period, the groups treated with 0.03% and 0.02% tocotrienol showed slower progression of cataract compared to the vehicle-treated group (p<0.05), whereas the group treated with 0.2% tocotrienol showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, and lens protein content did not show significant differences.

CONCLUSIONS:

Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its liposomal formulations at the same concentration.

Read more

Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats.

Radhakrishnan A, Tudawe D, Chakravarthi S, Chiew GS, Haleagrahara N.

Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund’s adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy.

Read more

Blood α-Tocopherol, γ-Tocopherol Levels and Risk of Prostate Cancer: A Meta-Analysis of Prospective Studies

Ran Cui., Zhu-Qing Liu., Qing Xu

Background

Epidemiological studies that have examined the association of blood α-tocopherol and γ-tocopherol (the principal bioactive form of vitamin E) levels with the risk of prostate cancer have yielded inconsistent results. In addition, a quantitative assessment of published studies is not available.

Methods and Findings

In this meta-analysis, relevant studies were sought by a search of the PubMed and Embase databases for articles published up to October 2013, with no restrictions. Bibliographies from retrieved articles also were scoured to find further eligible studies. Prospective studies that reported adjusted relative risk (RR) estimates with 95% confidence intervals (CIs) for the association between blood tocopherol levels and the risk of prostate cancer were included. Nine nested case–control studies involving approximately 370,000 participants from several countries were eligible. The pooled RRs of prostate cancer for the highest versus lowest category of blood α-tocopherol levels were 0.79 (95% CI: 0.68–0.91), and those for γ-tocopherol levels were 0.89 (95% CI: 0.71–1.12), respectively. Significant heterogeneity was present among the studies in terms of blood γ-tocopherol levels (p = 0.008) but not in terms of blood α-tocopherol levels (p = 0.33). The risk of prostate cancer decreased by 21% for every 25-mg/L increase in blood α-tocopherol levels (RR: 0.79; 95% CI: 0.69–0.91).

Conclusions

Blood α-tocopherol levels, but not γ-tocopherol levels, were inversely associated with the risk of prostate cancer in this meta-analysis.

Read more

Page 1 of 11