δ-Tocotrienol Oxazine Derivative Antagonizes Mammary Tumor Cell Compensatory Response to CoCl 2 -Induced Hypoxia.

Ananthula S, Parajuli P, Behery FA, Alayoubi AY, Nazzal S, El Sayed K, Sylvester PW.

In response to low oxygen supply, cancer cells elevate production of HIF-1α, a hypoxia-inducible transcription factor that subsequently acts to stimulate blood vessel formation and promote survival. Studies were conducted to determine the role of δ-tocotrienol and a semisynthetic δ-tocotrienol oxazine derivative, compound 44, on +SA mammary tumor cell hypoxic response. Treatment with 150 µM CoCl2 induced a hypoxic response in +SA mammary tumor cells as evidenced by a large increase in HIF-1α levels, and combined treatment with compound 44 attenuated this response. CoCl2-induced hypoxia was also associated with a large increase in Akt/mTOR signaling, activation of downstream targets p70S6K and eIF-4E1, and a significant increase in VEGF production, and combined treatment with compound 44 blocked this response. Additional in vivo studies showed that intralesional treatment with compound 44 in BALB/c mice bearing +SA mammary tumors significantly decreased the levels of HIF-1α, and this effect was associated with a corresponding decrease in Akt/mTOR signaling and activation of downstream targets p70S6kinase and eIF-4E1. These findings demonstrate that treatment with the δ-tocotrienol oxazine derivative, compound 44, significantly attenuates +SA mammary tumor cell compensatory responses to hypoxia and suggests that this compound may provide benefit in the treatment of rapidly growing solid breast tumors.

Read more

Expression of Senescence-Associated microRNAs and Target Genes in Cellular Aging and Modulation by Tocotrienol-Rich Fraction.

Gwee Sian Khee S, Mohd Yusof YA, Makpol S.

Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs) are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a) and established target genes of miR-34a (CCND1, CDK4, and SIRT1) during replicative senescence of human diploid fibroblasts (HDFs). Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P < 0.05). TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P < 0.05). TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.

Read more

Polysaccharopeptide enhanced the anti-cancer effect of gamma-tocotrienol through activation of AMPK.

Liu J, Lau EY, Chen J, Yong J, Tang KD, Lo J, Ng IO, Lee TK, Ling MT.

BACKGROUND:

Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy.

METHOD:

We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (gamma-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining gamma-T3 and PSP in the treatment of prostate cancer.Result: We showed that in the presence of PSP, gamma-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward gamma-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and gamma-T3 treaments significantly reduced the growth of prostate tumor in vivo.

CONCLUSION:

Our results indicate that PSP and gamma-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.

Read more

Therapeutic Efficacy of Vitamin E δ-Tocotrienol in Collagen-Induced Rat Model of Arthritis.

Haleagrahara N, Swaminathan M, Chakravarthi S, Radhakrishnan A.

Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory disease primarily involving inflammation of the joints. Although the management of the disease has advanced significantly in the past three decades, there is still no cure for RA. The aim of this study was to determine the therapeutic efficacy of δ-tocotrienol, in the rat model of collagen-induced arthritis (CIA). Arthritis was induced by intradermal injection of collagen type II emulsified in complete Freund’s adjuvant. CIA rats were orally treated with δ-tocotrienol (10 mg/kg) or glucosamine hydrochloride (300 mg/kg) from day 25 to 50. Efficacy was assessed based on the ability to reduce paw edema, histopathological changes, suppression of collagen-specific T-cells, and a reduction in C-reactive protein (CRP) levels. It was established that δ-tocotrienol had the most significant impact in lowering paw edema when compared to glucosamine treatment. Paw edema changes correlated well with histopathological analysis where there was a significant reversal of changes in groups treated with δ-tocotrienol. The results suggest that δ-tocotrienol is efficient in amelioration of collagen-induced arthritis. Vitamin E delta-tocotrienol may be of therapeutic value against rheumatoid arthritis.

Read more

Effects of annatto-derived tocotrienol supplementation on osteoporosis induced by testosterone deficiency in rats.

Chin KY, Ima-Nirwana S.

BACKGROUND:

Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.

METHODS:

Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.

RESULTS:

There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).

CONCLUSION:

AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.

Read more

Rice Bran Extract Compensates Mitochondrial Dysfunction in a Cellular Model of Early Alzheimer’s Disease.

Hagl S, Grewal R, Ciobanu I, Helal A, Khayyal MT, Muller WE, Eckert GP.

Mitochondrial dysfunction plays an important role in brain aging and has emerged to be an early event in Alzheimer’s disease (AD), contributing to neurodegeneration and the loss of physical abilities seen in patients suffering from this disease. We examined mitochondrial dysfunction in a cell culture model of AD (PC12APPsw cells) releasing very low amyloid-β (Aβ40) levels and thus mimicking early AD stages. Our data show that these cells have impaired energy metabolism, low ATP levels, and decreased endogenous mitochondrial respiration. Furthermore, protein levels of PGC1α as well as of Mitofusin 1 were decreased. PC12APPsw cells also showed an increased mitochondrial content, probably due to an attempt to compensate the impaired mitochondrial function. Recent data showed that stabilized rice bran extract (RBE) protects from mitochondrial dysfunction in vivo [24]. To assess the effect of a RBE on mitochondrial function, we treated PC12APPsw cells for 24 h with RBE. Key components of RBE are oryzanols, tocopherols, and tocotrienols, all substances that have been found to exert beneficial effects on mitochondrial function. RBE incubation elevated ATP production and respiratory rates as well as PGC1α protein levels in PC12APPsw cells, thus improving the impaired mitochondrial function assessed in our cell culture AD model. Therefore, RBE represents to be a promising nutraceutical for the prevention of AD.

Read more

The Little-Known Benefits Of Tocotrienols

By Thomas Rosenthal

The Little-Known Benefits Of Tocotrienols

If your vitamin E supplement contains only tocopherol forms, you may not be getting all of the benefits this nutrient has to offer. While tocopherols are very important, they lack many of the synergistic benefits offered by their cousins, the tocotrienols.

Few people realize that vitamin E is composed of eight different compounds. Half of these are called tocopherols, which is the most common form of vitamin E. The other half are known as tocotrienols.

Scientists are discovering that tocotrienols provide valuable therapeutic and preventive options for the diseases of aging that tocopherols alone may not provide.

Read More

Tocotrienols in action by The Star

Tocotrienols are fast overtaking their better-known vitamin E sibling, tocopherols, when it comes to customer satisfaction.

Researchers have long concentrated on the tocopherol members of the vitamin E family, which were discovered first. It was only in the last couple of decades that researchers have started to focus on tocotrienols.

GirlPalm_High Res

Studies have indicated that tocotrienols are stronger antioxidants than tocopherols. In the market, tocotrienols are viewed as better, stronger form of vitamin E with positive customer feedbacks as they offer beneficial effects to the skin. Besides, the pharmacists recommend tocotrienols for heart protection, cholesterol-lowering and stroke-prevention. The recommended dose vary based on individual responses.

Read more

Page 1 of 11