α-Tocopherol promotes HaCaT keratinocyte wound repair through the regulation of polarity proteins leading to the polarized cell migration.

Horikoshi Y, Kamizaki K, Hanaki T, Morimoto M, Kitagawa Y, Nakaso K, Kusumoto C, Matsura T

Biofactors. 2018 Feb 5. doi: 10.1002/biof.1414. [Epub ahead of print]

Abstract

In many developed countries including Japan, how to care the bedridden elderly people with chronic wounds such as decubitus becomes one of the most concerned issues. Although antioxidant micronutrients including vitamin E, especially α-tocopherol (α-Toc), are reported to shorten a period of wound closure, the promoting effect of α-Toc on wound healing independent of its antioxidant activity remains to be fully elucidated. The aim of this study was to examine whether α-Toc affects wound-mediated HaCaT keratinocyte polarization process including the recruitment of polarity regulating proteins, leading to wound repair independently of its antioxidant activity. We investigated the effects of α-Toc and other antioxidants such as Trolox, a cell-permeable α-Toc analog on the migration, proliferation, and cell polarization of HaCaT keratinocytes after wounding. We analyzed the localization and complex formation of polarity proteins, partitioning defective 3 (Par3), and atypical protein kinase C (aPKC), and aPKC activity by immunohistochemistry, immunoprecipitation analyses, and in vitro kinase assays, respectively. α-Toc but not other antioxidants enhanced the wound closure and cell polarization in HaCaT keratinocytes after wounding. α-Toc regulated the localization and complex formation of Par3 and aPKC during wound healing. Knockdown of aPKC or Par3 abrogated α-Toc-mediated promotion of the wound closure and cell polarization in HaCaT keratinocytes. Furthermore, aPKC kinase activity was significantly increased in α-Toc-treated cells through activation of phosphatidylinositol 3-kinase/Akt signaling pathway. These results suggest that α-Toc promotes HaCaT keratinocyte wound repair by regulating the aPKC kinase activity and the formation of aPKC-Par3 complex.

Read More

Are Antioxidants Really Important To Humans?

The human body is a very delicate machine and various substances, natural or man made are useful and beneficial  to its ability to perform optimally.
Amongst those substances are antioxidants.
An antioxidant is a molecule that inhibits the oxidation of other molecules. Oxidation is a chemical reaction that can produce free radicals, leading to chain reactions that may damage cells.
You might already know about foods you should be eating for your heart or your gut—but what about the foods that protect your cells? Those would be the ones packed with antioxidants, a buzzy term you’ve probably heard before.
What Are Antioxidants?

Read More

Effect of in vitro vitamin E (alpha-tocopherol) supplementation in human spermatozoon submitted to oxidative stress.

Adami LNG, Belardin LB, Lima BT, Jeremias JT, Antoniassi MP, Okada FK, Bertolla RP

Andrologia. 2018 Feb 2. doi: 10.1111/and.12959. [Epub ahead of print]

Abstract

The aim of this study was to evaluate the antioxidant effect of in vitro supplementation with vitamin E in human spermatozoon incubated with an oxidative stress inducer. In this study, semen samples from 30 patients were collected and with one aliquot we performed semen analysis according to WHO. The remaining volume was divided into four aliquots: group C: incubated with BWW medium; group I: incubated with 5 mmol 1-1 hydrogen peroxide; group A: incubated with 40 μmol 1-1 vitamin E; and group AI: incubated with both them. After incubations, sperm functional analyses were performed and included: evaluation of oxidative stress, acrosome integrity, mitochondrial activity and DNA fragmentation. Groups were compared using a Friedman test with Bonferroni post hoc (α = 5%). In this study, we observed that in group I there was a decrease in acrosome integrity and mitochondrial activity, and an increase in DNA fragmentation, when compared to group C. Group AI showed an increase in acrosome integrity and mitochondrial activity when compared with group I. Based on our findings, we conclude that the vitamin E supplementation had a positive effect in protecting human spermatozoon from induced oxidative stress.

Read More

Interaction of Vitamin E Intake and Pro12Ala Polymorphism of PPARG with Adiponectin Levels.

Campos-Perez W, Torres-Castillo N, Perez-Robles M, Muñoz-Valle JF, Vizmanos-Lamotte B, Martinez-Lopez E

J Nutrigenet Nutrigenomics. 2018 Feb 2;10(5-6):172-180. doi: 10.1159/000486160. [Epub ahead of print]

Abstract

BACKGROUND/AIM:

One of the beneficial effects associated with vitamin E intake is the enhancement of peroxisome proliferator-activated receptor gamma (PPARγ) activity and the consequent upregulation of adiponectin expression. The aim of this study was to analyze the adiponectin levels in subjects with the Pro12Ala polymorphism of PPARG according to vitamin E intake.

METHODS:

A total of 283 subjects were enrolled. Total vitamin E intake was estimated based on a validated 3-day food consumption record and analyzed using Nutritionist ProTM software. The Pro12Ala polymorphism (rs1801282) was determined by allelic discrimination. The adiponectin levels were measured by an ELISA assay.

RESULTS:

Vitamin E intake was deficient in all subjects (1.50 ± 1.78 mg/day). Subjects with higher vitamin E intake levels and the Pro12Ala/Ala12Ala genotype had statistically significant higher levels of serum adiponectin than subjects with the Pro12Pro genotype (4.4 [3.2-5.7] vs. 2.7 [2.0-3.5] μg/mL; p = 0.024).

CONCLUSIONS:

Our results suggest that increased consumption of vitamin E should be encouraged since it has been reported that vitamin E promotes adiponectin expression via PPARγ activation. Subjects with Pro12Pro genotype had lower serum adiponectin levels than subjects with Pro12Ala/Ala12Ala genotype; therefore, they might be at higher risk of developing metabolic complications.

Read More