The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial

Tamtaji OR, Taghizadeh M, Aghadavod E, Mafi A, Dadgostar E, Daneshvar Kakhaki R, Abolhassani J, Asemi Z

Clin Neurol Neurosurg. 2019 Jan;176:116-121. doi: 10.1016/j.clineuro.2018.12.006. Epub 2018 Dec 8.

Abstract

OBJECTIVE:

This study was conducted to evaluate the effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in subjects with Parkinson’s disease (PD).

PATIENTS AND METHODS:

This randomized, double-blind, placebo-controlled clinical trial was performed in 40 subjects with PD. Participants were randomly allocated into two groups to take either 1000 mg/day of omega-3 fatty acids from flaxseed oil plus 400 IU/day of vitamin E supplements or placebo (n = 20 each group) for 12 weeks. Gene expression related to inflammation, insulin and lipid were quantified in peripheral blood mononuclear cells (PBMC) of PD patients with RT-PCR method.

RESULTS:

After the 12-week intervention, compared with the placebo, omega-3 fatty acids and vitamin E co-supplementation downregulated gene expression of tumor necrosis factor alpha (TNF-α) (P = 0.002) in PBMC of subjects with PD. In addition, omega-3 fatty acids and vitamin E co-supplementation upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) (P = 0.03), and downregulated oxidized low-density lipoprotein receptor (LDLR) (P = 0.002) in PBMC of subjects with PD compared with the placebo. We did not observe any significant effect of omega-3 fatty acids and vitamin E co-supplementation on gene expression of interleukin-1 (IL-1) and IL-8 in PBMC of patients with PD.

CONCLUSIONS:

Overall, omega-3 fatty acids and vitamin E co-supplementation for 12 weeks in PD patients significantly improved gene expression of TNF-α, PPAR-γ and LDLR, but did not affect IL-1 and IL-8.

Read More

Utilization of Vitamin E Analogs to Protect Normal Tissues While Enhancing Antitumor Effects

Aykin-Burns N, Pathak R, Boerma M, Kim T, Hauer-Jensen M

Semin Radiat Oncol. 2019 Jan;29(1):55-61. doi: 10.1016/j.semradonc.2018.10.008.

Abstract

Despite advances in radiation delivery techniques, side effects of radiation therapy due to radiation exposure of normal tissues are common and can limit the deliverable dose to tumors. Significant interests lie in pharmacologic modifiers that may protect against normal tissue toxicity from cancer treatment while simultaneously enhancing the tumor response to therapy. While no such treatments are available in the clinic, this is an area of active preclinical and clinical research. This review summarizes research studies that provide evidence to indicate that tocotrienols, natural forms of vitamin E, are potent radiation protectors and may also have antitumor effects. Hence, several current clinical trials test tocotrienols as concomitant treatment in cancer therapies.

Read More

Tocopherol Emulsions as Functional Autoantigen Delivery Vehicles Evoke Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis.

Griffin JD, Christopher MA, Thati S, Salash JR, Pressnall MM, Weerasekara DB, Lunte SM, Berkland CJ

Mol Pharm. 2019 Jan 7. doi: 10.1021/acs.molpharmaceut.8b00887. [Epub ahead of print]

Abstract

Contemporary approaches to treating autoimmune diseases like Multiple Sclerosis broadly modulate the immune system and leave patients susceptible to severe adverse effects. Antigen-specific immunotherapies (ASIT) offer a unique opportunity to selectively suppress autoreactive cell populations, but have suffered from marginal efficacy even when employing traditional adjuvants to improve delivery. The development of immunologically active antigen delivery vehicles could potentially increase the clinical success of antigen-specific immunotherapies. An emulsion of the antioxidant tocopherol delivering an epitope of proteolipid protein autoantigen (PLP139-151) yielded significant efficacy in mice with experimental autoimmune encephalomyelitis (EAE). In vitro studies indicated tocopherol emulsions reduced oxidative stress in antigen presenting cells. Ex vivo analysis revealed that tocopherol emulsions shifted cytokines responses in EAE splenocytes. In addition, IgG responses against PLP139-151 were increased in mice treated with tocopherol emulsions delivering the antigen suggesting a possible skew in immunity. Overall, tocopherol emulsions provide a functional delivery vehicle for ASIT capable of ameliorating autoimmunity in a murine model.

Read More

An open letter to Jeremy Hunt on palm oil

It is understandable if the Western edible oil industry launches a vicious campaign against palm oil out of commercial interest, even if lies and half-truths are employed. But when governments side with the for-profit industry in phasing out the import of palm oil without careful consideration of the facts, it calls into question the fairness and democratic principles that Western countries often preach.

Read More

Tocopherols and Tocotrienols (Vitamin E) – The Lipid Web

Tocopherols and tocotrienols constitute a series of related benzopyranols (or methyl tocols) that are synthesised in plants and other photosynthetic organisms, where they have many important functions. First described in 1922 as a dietary factor essential to prevent fetal reabsorption in rats, it was soon understood that they contained a vitamin (vitamin E) that is essential for innumerable aspects of animal development. Tocopherols are now known to be powerful lipid-soluble antioxidants, but only one isomer, i.e. α-tocopherol, is recognized as having vitamin E activity. In addition, this has regulatory roles in signal transduction and gene expression in animal tissues. Vegetable oils are a major dietary source.

Read More

Kinetic Study of the Quenching Reaction of Singlet Oxygen by Eight Vegetable Oils in Solution

Mukai K, Ohara A, Ito J, Hirata M, Kobayashi E, Nakagawa K, Nagaoka SI

J Oleo Sci. 2019 Jan 1;68(1):21-31. doi: 10.5650/jos.ess18179. Epub 2018 Dec 12.

Abstract

A kinetic study of the reaction of singlet oxygen (1O2) with eight vegetable oils 1-8 containing different concentrations of tocopherols (Tocs) and tocotrienols (Toc-3s) was performed. The second-order rate constants (kQ) for the reaction of 1O2 with vegetable oils 1-8 (rice bran, perilla, rape seed, safflower, grape seed, sesame, extra virgin olive, and olive oils) were measured in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 35°C using UV-vis spectrophotometry. Furthermore, comparisons of kQ values determined for the above oils 1-8 with the sum of the product {∑kQAO-i [AO-i]/105} of the kQAO-i values obtained for each antioxidant (AO-i) and concentration (in mg/100 g) ([AO-i]/105) of AO-i (Tocs and Toc-3s) contained in the oils 1-8 were performed. The observed kQ values were not reproduced by the kQ values calculated using only the concentrations of the four Tocs and Toc-3s. These results suggest that the contribution of fatty acids contained in the oils 1-8 is also necessary to fully explain the kQ values. Recently, the second-order rate constants (kS) for the reaction of aroxyl radical (ArO・) with the same vegetable oils 1-8 were measured in the same solvent at 25℃ using stopped-flow spectrophotometry (Ref. 23). The kS values obtained could be well explained as the sum of the product {Σ kSAO-i [AO-i]/105} of the kSAO-i and the [AO-i]/105 of AO-i (Tocs and Toc-3s) contained in the vegetable oils.

Read More

Page 1 of 11