Alpha-Tocopherol during lactation and after weaning alters the programming effect of prenatal high salt intake on cardiac and renal functions of adult male offspring

Cabral EV, Vieira LD, Sant'Helena BRM, Ribeiro VS, Farias JS, Aires RS, Paz ST, Muzi-Filho H, Paixão AD, Vieyra A


Maternal salt overload programs cardiovascular and renal alterations in the offspring. However, beneficial and harmful effects of high dose vitamin E supplementation have been described in humans and animals. We investigated the hypothesis as to whether cardiac and renal alterations can be programmed by gestational salt overload, and can become further modified during lactation and after weaning. Male Wistar rats were used, being the offspring of mothers that drank either tap water or 0.3 mol/L NaCl for 20 days before and during pregnancy. α-Tocopherol (0.35 g/kg) was administered to mothers daily during lactation or to their offspring for 3 weeks post-weaning. Systolic blood pressure (tcSBP) was measured in juvenile rats aged 210 days. The response of mean arterial pressure (MAP) and heart rate (HR) to intravenous infusion of angiotensin II (Ang II) was also examined. Left ventricle plasma membrane (PMCA) and sarcoplasmic reticulum Ca2+ -ATPase (SERCA) activities, and certain parameters of renal function, were measured. Maternal saline programmed for increased body mass and kidney mass/body mass ratio, increased tcSBP, increased mean arterial pressure and heart rate with anomalous response to infused Ang II. In the heart, saline increased PMCA and α-Tocopherol per se increased PMCA/SERCA. In the kidney, the most remarkable result was the silent saline programming of CrCl , which was sensitized for a sharp decrease after α-Tocopherol. In conclusion, the combination of maternal saline overload and high α-Tocopherol immediately after birth leads to simultaneous cardiovascular and renal alterations in the young offspring, like those encountered in type V cardiorenal syndrome.

Read More