The effect of combined application of pentoxifylline and vitamin E for the treatment of osteoradionecrosis of the jaws: a meta-analysis

Zhang Z, Xiao W, Jia J, Chen Y, Zong C, Zhao L, Tian L

Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Mar;129(3):207-214. doi: 10.1016/j.oooo.2019.08.005. Epub 2019 Aug 29.

Abstract

OBJECTIVE:

The aim of this study was to evaluate the effect of combined application of pentoxifylline and vitamin E (PENTO) for the treatment of osteoradionecrosis of the jaws (ORNJ) by performing a meta-analysis.

STUDY DESIGN:

We searched for trials in 4 electronic databases (PubMed, Cochrane library, EMbase, and Web of Science) for studies that compared the effect of PENTO with those of other treatment methods. The range of exposed bone was chosen as the index to assess the effects of the different treatment methods. We performed the meta-analysis by using Review Manager 5.3.

RESULTS:

We identified 5 trials, which included 184 patients in the PENTO group and 180 patients in the “other treatment methods” (OTHER) group, and we performed a meta-analysis by using the random effect model. PENTO had a better effect compared with all the other treatment methods, and a statistically significant difference was noted (odds ratio [OR] = 4.54; 95% confidence interval [CI] 2.89-7.12; P < .01). PENTO was statistically different from antibiotics (OR = 7.02; 95% CI 1.33-37.01; P < .05) and hyperbaric oxygen therapy (OR = 20.06; 95% CI 1.74-230.78; P < .05) in terms of treatment effect. However, we could not confirm that PENTO was more effective than local surgery (OR = 6.50; 95% CI 0.80-53.09; P < .1).

CONCLUSIONS:

The results of this meta-analysis suggest that the application of PENTO for the treatment of ORNJ shows superior efficiency relative to the other treatment methods.

Read More

Annatto-Derived Tocotrienol Promotes Mineralization of MC3T3-E1 Cells by Enhancing BMP-2 Protein Expression via Inhibiting RhoA Activation and HMG-CoA Reductase Gene Expression

Wan Hasan WN, Chin KY, Abd Ghafar N, Soelaiman IN

Drug Des Devel Ther. 2020 Mar 3;14:969-976. doi: 10.2147/DDDT.S224941. eCollection 2020.

Abstract

PURPOSE:

Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis and promote differentiation of pre-osteoblastic cells. However, the mechanism of action of AnTT in achieving these effects is unclear. This study aims to investigate the mechanism of action of AnTT on MC3T3-E1 pre-osteoblasts via the mevalonate pathway.

METHODS:

Murine pre-osteoblastic cells, MC3T3-E1, were cultured with the density of 1 × 104 cells/mL and treated with 4 concentrations of AnTT (0.001-1 µg/mL). Expression of HMG-CoA reductase (HMGR) gene was carried out using qPCR after treatment with AnTT for 21 days. RhoA activation and bone morphogenetic protein-2 (BMP-2) were measured using immunoassay after 9 and 15 days of AnTT treatment. Lovastatin was used as the positive control. Mineralized nodules were detected using Von Kossa staining after 21 days of AnTT treatment.

RESULTS:

The results showed that HMGR was up-regulated in the lovastatin group on day 9 and 21 compared to the control. Lovastatin also inhibited RhoA activation (day 9 and 15) and increased BMP-2 protein (day 15). On the other hand, AnTT at 0.001 μg/mL (day 3) and 0.1 μg/mL (day 21) significantly down-regulated HMGR gene expression compared to the control. On day 21, HMGR gene expression was significantly reduced in all groups compared to day 15. AnTT at 0.1 μg/mL significantly decreased RhoA activation on day 9 compared to the control. AnTT at 1 μg/mL significantly increased BMP-2 protein on day 15 compared to the control (P<0.05). Mineralized calcium nodules were more abundant in AnTT treated groups compared to the control on day 21.

CONCLUSION:

AnTT suppresses the mevalonate pathway by downregulating HMGR gene expression and inhibiting RhoA activation, leading to increased BMP-2 protein in MC3T3-E1 cells. This explains the stimulating effects of AnTT on osteoblast mineralization.

Read More

Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells

Kohno K, Yamada W, Ishitsuka A, Sekine M, Virgona N, Ota M, Yano T

Biosci Biotechnol Biochem. 2020 Mar;84(3):526-535. doi: 10.1080/09168451.2019.1693252. Epub 2019 Nov 19.

Abstract

Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.

Read More

2-year results of an RCT of 2 uncemented isoelastic monoblock acetabular components: lower wear rate with vitamin E blended highly cross-linked polyethylene compared to ultra-high molecular weight polyethylene

van Erp JHJ, Massier JRA, Halma JJ, Snijders TE, de Gast A

Acta Orthop. 2020 Feb 26:1-6. doi: 10.1080/17453674.2020.1730073. [Epub ahead of print]

Abstract

Background and purpose – The long-term survival of arthroplasty components may be limited by polyethylene wear-related problems such as periprosthetic osteolysis and aseptic loosening. Highly cross-linked polyethylene (HXLPE) blended with vitamin E was introduced to improve oxidative stability and to avoid long-term embrittlement. This study clinically compares the tribological behavior and clinical outcome of vitamin E blended HXLPE with ultra-high molecular weight polyethylene (UHMWPE) in an isoelastic monoblock cup for uncemented total hip arthroplasty.Patients and methods – In this randomized controlled trial (RCT), 199 patients were included: 102 patients received the vitamin E blended HXLPE cup, 97 patients the UHMWPE cup. Clinical and radiographic parameters were obtained preoperatively, directly postoperative and at 3, 12, and 24 months. Wear rates were compared using the mean linear femoral head penetration (FHP) rate.Results – 188 patients (94%) completed the 2-year follow-up. Mean patient satisfaction was higher in the vitamin E blended HXLPE group (8.9 [1]) than in in the control group (8.5 [2], p = 0.03). The Harris Hip Score (HHS) was higher in the vitamin E blended HXLPE group (95 [8]) than in the control group (92 [11], p = 0.3). The FHP rate was lower in the vitamin E blended HXLPE group: 0.046 mm/year compared with 0.056 mm/year in the control group (p = 0.05). No adverse reactions associated with the clinical application of vitamin E blended HXLPE were observed during follow-up, with an excellent 2-year survival to revision rate of 98% for both cups.Interpretation – This study shows the superior performance of the HXLPE blended with vitamin E acetabular cup with lower linear femoral head penetration rates and better clinical results compared with the UHMWPE acetabular cup after 2 years.

Read More

The effects of pentoxifylline and tocopherol in jaw osteomyelitis

Seo MH, Eo MY, Myoung H, Kim SM, Lee JH

J Korean Assoc Oral Maxillofac Surg. 2020 Feb;46(1):19-27. doi: 10.5125/jkaoms.2020.46.1.19. Epub 2020 Feb 26.

Abstract

OBJECTIVES:

Pentoxifylline (PTX) is a methylxanthine derivative that has been implicated in the pathogenesis of peripheral vessel disease and intermittent lameness. The purpose of this study was to investigate the effect of PTX and tocopherol in patients diagnosed with osteoradionecrosis (ORN), bisphosphonate-related osteonecrosis of the jaw (BRONJ), and chronic osteomyelitis using digital panoramic radiographs.

MATERIALS AND METHODS:

This study was performed in 25 patients who were prescribed PTX and tocopherol for treatment of ORN, BRONJ, and chronic osteomyelitis between January 2014 and May 2018 in Seoul National University Dental Hospital. Radiographic densities of the dental panorama were compared prior to starting PTX and tocopherol, at 3 months, and at 6 months after prescription. Radiographic densities were measured using Adobe Photoshop CS6 (Adobe System Inc., USA). Blood sample tests showing the degree of inflammation at the initial visit were considered the baseline and compared with results after 3 to 6 months. Statistical analysis was performed using the Mann-Whitney test and repeated measurement ANOVA using IBM SPSS 23.0 (IBM Corp., USA).

RESULTS:

Eight patients were diagnosed with ORN, nine patients with BRONJ, and the other 8 patients with chronic osteomyelitis. Ten of the 25 patients were men, average age was 66.32±14.39 years, and average duration of medication was 151.8±80.65 days (range, 56-315 days). Statistically significant increases were observed in the changes between 3 and 6 months after prescription (P<0.05). There was no significant difference between ORN, BRONJ, and chronic osteomyelitis. Only erythrocyte sedimentation rate (ESR) was statistically significantly lower than before treatment (P<0.05) among the white blood cell (WBC), ESR, and absolute neutrophil count (ANC).

CONCLUSION:

Long-term use of PTX and tocopherol can be an auxiliary method in the treatment of ORN, BRONJ, or chronic osteomyelitis in jaw.

Read More

Vitamin E-blended highly cross-linked polyethylene liners in total hip arthroplasty: a randomized, multicenter trial using virtual CAD-based wear analysis at 5-year follow-up

Busch A, Jäger M, Klebingat S, Baghdadi J, Flörkemeier T, Hütter F, Grupp TM, VITAS-Group, Haversath M

Arch Orthop Trauma Surg. 2020 Feb 12. doi: 10.1007/s00402-020-03358-x. [Epub ahead of print]

Abstract

BACKGROUND:

Progressive oxidation of highly cross-linked ultra-high molecular weight (UHMPWE-X) liners is considered to be a risk factor for material failure in THA. Antioxidants such as vitamin E (alpha-tocopherol) (UHMWPE-XE) were supplemented into the latest generation of polyethylene liners. To prevent inhomogenous vitamin E distribution within the polymer, blending was established as an alternative manufacturing process to diffusion. The purpose of the present study was to investigate the in vivo wear behavior of UHMWPE-XE in comparison with conventional UHMWPE-X liners using virtual CAD-based radiographs.

METHODS:

Until now, 94 patients from a prospective, randomized, controlled, multicenter study were reviewed at 5-year follow-up. Of these, 51 (54%) received UHMWPE-XE and 43 (46%) UHMWPE-X liners. Anteroposterior pelvic radiographs were made immediately after surgery and at 1 and 5 years postoperatively. The radiographs were analyzed using the observer-independent analysis software RayMatch® (Raylytic GmbH, Leipzig, Germany).

RESULTS:

The mean wear rate was measured to be 23.6 μm/year (SD 13.7; range 0.7-71.8 μm). There were no significant differences between the two cohorts (UHMWPE-X: 23.2 μm/year vs. UHMWPE-XE: 24.0 μm/year, p = 0.73). Cup anteversion significantly changed within the 1st year after implantation independent from the type of polyethylene liner [UHMWPE-X: 18.2-23.9° (p = 0.0001); UHMWPE-XE: 21.0-25.5° (p = 0.002)]. No further significant changes of cup anteversion in both groups were found between year 1 and 5 after implantation [UHMWPE-X (p = 0.46); UHMWPE-XE (p = 0.56)].

CONCLUSION:

The present study demonstrates that the addition of vitamin E does not adversely affect the midterm wear behavior of UHMWPE-X. The antioxidative benefit of vitamin E is expected to become evident in long-term follow-up. Cup anteversion increment by 5° within the 1st year is likely a result of the released hip flexion contracture resulting in an enhanced posterior pelvic tilt. Therefore, a reassessment of target values in acetabular cup placement might be considered.

Read More

Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence

Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Fahami NAM, Mohamed IN, Shuid AN, Saad QM, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin AK

Nutrients. 2020 Jan 19;12(1). pii: E259. doi: 10.3390/nu12010259.

Abstract

Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.

Read More

Effects of pentoxifylline and tocopherol on a rat-irradiated jaw model using micro-CT cortical bone analysis

Nguyen TTH, Eo MY, Seo MH, Myoung H, Kim SM, Lee JH

Eur Arch Otorhinolaryngol. 2019 Dec;276(12):3443-3452. doi: 10.1007/s00405-019-05600-8.

Abstract

PURPOSE:

A combination of pentoxifylline (PTX) and tocopherol (TP) is believed to reduce chronic fibrosis and induce bone healing in osteoradionecrosis (ORN) of the mandible, but evidence of its therapeutic effectiveness for cortical bone is lacking. This study was designed to determine the effect of combined PTX and TP (PTX + TP) on mandibular cortical bone remodeling in a rat model of ORN, using micro-CT and histological analysis.

METHODS:

Forty-eight 8-week-old male Sprague-Dawley rats were randomly divided into irradiated (n = 40) and non-irradiated (n = 8) groups. Animals in the irradiated group were divided into four sub-groups, including PTX, TP, PTX + TP, and normal saline. Three weeks after irradiation, mandibular posterior tooth extraction was performed, and animals were sacrificed 7 weeks after irradiation. The mandibles were analyzed using micro-CT and histological evaluation.

RESULTS:

The alveolar bone height, cortical bone thickness, cortical bone volume, and total cortical bone surface of the PTX + TP group were significantly greater than those of other irradiated groups (p < 0.05). In 3D reconstructed images, the residual volumes of cortical and cancellous bone were inadequate in the irradiated groups.

CONCLUSION:

We found that a combination of PTX and TP improved quality and quantity of cortical bone in irradiated rat mandibles, thus providing supporting evidence of its utility as a treatment and prophylactic agent in ORN. We observed inadequate volumes of cortical and cancellous bone in ORN mandibles, suggesting that cortical bone could play an important role in further ORN studies.

Read More

The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts

Shah AK, Yeganehjoo H

Mol Cell Biochem. 2019 Dec;462(1-2):173-183. doi: 10.1007/s11010-019-03620-w

Abstract

Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d-δ-tocotrienol (0-25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d-δ-Tocotrienol (0-25 μmol/L), but not D-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d-δ-tocotrienol (0-25 μmol/L). Concomitantly, Western blot analysis showed that d-δ-tocotrienol down-regulated HMG CoA reductase. d-δ-Tocotrienol (0-25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.

Read More

Tocotrienol-rich fraction from annatto ameliorates expression of lysyl oxidase in human osteoblastic MG-63 cells

Kohno K, Yamada W, Ishitsuka A, Sekine M, Virgona N, Ota M, Yano T

Biosci Biotechnol Biochem. 2019 Nov 19:1-10. doi: 10.1080/09168451.2019.1693252.

Abstract

Lysyl oxidase (LOX) is required for the formation of bone collagen cross-links. Inactivation of the LOX gene in osteoblasts by DNA methylation and JAK signaling has been reported to cause loss of cross-links and an increased risk of fractures. Tocotrienols (T3s) have proven benefits on bone strength, but their potential effects on LOX remain largely unknown. Thus, the present study investigates the in vitro effects of T3s on LOX expression in human osteoblastic MG-63 cells. Results indicated that Tocotrienol-Rich Fraction (TRF), the δ-T3 rich oil extracted from Annatto was the most effective and significantly increased LOX expression. TRF treatment decreased de-novo methyltransferases (DNMTs), DNMT3A and DNMT3B levels. In addition, TRF significantly inhibited JAK2 activation and decreased expression of Fli1, a transcription factor of DNMTs. We conclude that TRF induced an increase in LOX expression via inhibition of de-novo methylation and reduction of Fli1 expression by the inactivation of JAK2.

Read More