The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial

Tamtaji OR, Taghizadeh M, Aghadavod E, Mafi A, Dadgostar E, Daneshvar Kakhaki R, Abolhassani J, Asemi Z

Clin Neurol Neurosurg. 2019 Jan;176:116-121. doi: 10.1016/j.clineuro.2018.12.006. Epub 2018 Dec 8.

Abstract

OBJECTIVE:

This study was conducted to evaluate the effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression related to inflammation, insulin and lipid in subjects with Parkinson’s disease (PD).

PATIENTS AND METHODS:

This randomized, double-blind, placebo-controlled clinical trial was performed in 40 subjects with PD. Participants were randomly allocated into two groups to take either 1000 mg/day of omega-3 fatty acids from flaxseed oil plus 400 IU/day of vitamin E supplements or placebo (n = 20 each group) for 12 weeks. Gene expression related to inflammation, insulin and lipid were quantified in peripheral blood mononuclear cells (PBMC) of PD patients with RT-PCR method.

RESULTS:

After the 12-week intervention, compared with the placebo, omega-3 fatty acids and vitamin E co-supplementation downregulated gene expression of tumor necrosis factor alpha (TNF-α) (P = 0.002) in PBMC of subjects with PD. In addition, omega-3 fatty acids and vitamin E co-supplementation upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) (P = 0.03), and downregulated oxidized low-density lipoprotein receptor (LDLR) (P = 0.002) in PBMC of subjects with PD compared with the placebo. We did not observe any significant effect of omega-3 fatty acids and vitamin E co-supplementation on gene expression of interleukin-1 (IL-1) and IL-8 in PBMC of patients with PD.

CONCLUSIONS:

Overall, omega-3 fatty acids and vitamin E co-supplementation for 12 weeks in PD patients significantly improved gene expression of TNF-α, PPAR-γ and LDLR, but did not affect IL-1 and IL-8.

Read More

Vitamin E: Regulatory role of metabolites

Birringer M, Lorkowski S

IUBMB Life. 2018 Dec 22. doi: 10.1002/iub.1988. [Epub ahead of print]

Abstract

Vitamin E plays an important role as a lipophilic antioxidant in cellular redox homeostasis. Besides this function, numerous non-antioxidant properties of this vitamin have been discovered in the past. DNA microarray technology revealed a complex regulatory network influenced by the different vitamin E forms (Rimbach et al., Molecules, 15, 1746 (2010); Galli et al., Free Radic. Biol. Med., 102, 16 (2017)); however, little is known about the biological activity of vitamin E metabolites. A new chapter of vitamin E research was been opened when endogenous long-chain tocopherol metabolites were identified and their high biological activity in vitro and in vivo was recognized (Schmölz et al., World J. Biol. Chem., 7, 14 (2016); Torquato et al., J. Pharm. Biomed. Anal., 124, 399 (2016)). Just recently, it was shown that an endogenous metabolite of vitamin E inhibits 5-lipoxygenase at nanomolar concentrations, thereby limiting inflammation (Pein et al., Nat. Commun., 9, 3834 (2018)). Furthermore, long-chain vitamin E metabolites (LCM) exhibit hormone-like activities similar to the lipid soluble vitamins A and D (Galli et al., Free Radic. Biol. Med., 102, 16 (2017); Schubert et al., Antioxidants, 7 (2018)). This review aims at summarizing recent findings on the regulatory activities of vitamin E metabolites, especially of LCMs.

Read More

The Effects of Magnesium and Vitamin E Co-Supplementation on Hormonal Status and Biomarkers of Inflammation and Oxidative Stress in Women with Polycystic Ovary Syndrome

Shokrpour M, Asemi Z

Biol Trace Elem Res. 2018 Dec 18. doi: 10.1007/s12011-018-1602-9. [Epub ahead of print]

Abstract

Synergistic approach of magnesium and vitamin E may benefit clinical symptoms of patients with polycystic ovary syndrome (PCOS) through improving their metabolic profiles and reducing oxidative stress and inflammation. This study was designed to determine the effects of magnesium and vitamin E co-supplementation on hormonal status and biomarkers of inflammation and oxidative stress in women with PCOS. This randomized, double-blind, placebo-controlled trial was conducted among 60 women with PCOS, aged 18-40 years old. Participants were randomly divided into two groups to take 250 mg/day magnesium plus 400 mg/day vitamin E supplements or placebo (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and after the 12-week intervention to quantify related variables. Magnesium and vitamin E co-supplementation resulted in a significant reduction in hirsutism (β - 0.37; 95% CI, - 0.70, - 0.05; P = 0.02) and serum high-sensitivity C-reactive protein (hs-CRP) (β - 0.67 mg/L; 95% CI, - 1.20, - 0.14; P = 0.01), and a significant increase in plasma nitric oxide (NO) (β 3.40 μmol/L; 95% CI, 1.46, 5.35; P = 0.001) and total antioxidant capacity (TAC) levels (β 66.32 mmol/L; 95% CI, 43.80, 88.84; P < 0.001). Overall, magnesium and vitamin E co-supplementation for 12 weeks may benefit women with PCOS on hirsutism, serum hs-CRP, plasma NO, and TAC levels.

Read More

Vitamin E – The Next 100 Years

Khadangi F, Azzi A

IUBMB Life. 2018 Dec 14. doi: 10.1002/iub.1990. [Epub ahead of print]

Abstract

α-Tocopherol is the only tocopherol that has been shown to prevent the human deficiency disease Ataxia with Isolated Vitamin E Deficiency (AVED), and thus it is the only one that, for humans, can be called vitamin EVitamin E in addition to preventing AVED has documented immune boosting properties and an activity against nonalcoholic hepatosteatosis and low-grade inflammation. Epidemiological studies indicating that vitamin E could prevent cardiovascular events, neurodegenerative disease, macular degeneration, and cancer were in general not confirmed by clinical intervention studies. Vitamin E and some of its metabolites modulate cell signaling and gene transcription. Future research is needed to achieve a better understanding of the molecular events leading to gene regulation by vitamin E, especially in its phosphorylated form. Isolation and characterization of the vitamin E kinase and vitamin E phosphate phosphatase will help in the understanding of cell regulation processes modulated by vitamin E. A clarification of the pathogenesis of AVED remains an important goal to be achieved.

Read More

Vitamin E Increases Antimicrobial Sensitivity by Inhibiting Bacterial Lipocalin Antibiotic Binding

Naguib MM, Valvano MA

mSphere. 2018 Dec 12;3(6). pii: e00564-18. doi: 10.1128/mSphere.00564-18.

Abstract

Burkholderia cenocepacia is an opportunistic Gram-negative bacterium that causes serious respiratory infections in patients with cystic fibrosis. Recently, we discovered that B. cenocepacia produces the extracellular bacterial lipocalin protein BcnA upon exposure to sublethal concentrations of bactericidal antibiotics. BcnA captures a range of antibiotics outside bacterial cells, providing a global extracellular mechanism of antimicrobial resistance. In this study, we investigated water-soluble and liposoluble forms of vitamin E as inhibitors of antibiotic binding by BcnA. Our results demonstrate that in vitro, both vitamin E forms bind strongly to BcnA and contribute to reduce the MICs of norfloxacin (a fluoroquinolone) and ceftazidime (a β-lactam), both of them used as model molecules representing two different chemical classes of antibiotics. Expression of BcnA was required for the adjuvant effect of vitamin E. These results were replicated in vivousing the Galleria mellonella larva infection model whereby vitamin E treatment, in combination with norfloxacin, significantly increased larva survival upon infection in a BcnA-dependent manner. Together, our data suggest that vitamin E can be used to increase killing by bactericidal antibiotics through interference with lipocalin binding.

Read More

Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms

Jiang Q

IUBMB Life. 2018 Dec 11. doi: 10.1002/iub.1978. [Epub ahead of print]

Abstract

The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13′-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13′-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy.

Read More

Delineation of the Individual Effects of Vitamin E Isoforms on Early Life Incident Wheezing

Stone CA Jr, Cook-Mills J, Gebretsadik T, Rosas-Salazar C, Turi K, Brunwasser SM, Connolly A, Russell P, Liu Z, Costello K, Hartert TV

J Pediatr. 2018 Dec 5. pii: S0022-3476(18)31552-X. doi: 10.1016/j.jpeds.2018.10.045. [Epub ahead of print]

Abstract

OBJECTIVES:

To test the hypothesis that maternal plasma alpha-tocopherol levels are associated with protection from childhood wheeze and that this protection is modified by gamma-tocopherol.

STUDY DESIGN:

We conducted a prospective nested study in the Infant Susceptibility to Pulmonary Infections and Asthma Following Respiratory Syncytial Virus Exposure birth cohort of 652 children with postpartum maternal plasma vitamin E isoforms used as a surrogate for pregnancy concentrations. Our outcomes were wheezing and recurrent wheezing over a 2-year period, ascertained using validated questionnaires. We assessed the association of alpha- and gamma-tocopherol with wheezing outcomes using multivariable adjusted logistic regression, and tested for interaction between the isoforms with respect to the risk for wheezing outcomes.

RESULTS:

Children with wheezing (n = 547, n = 167; 31%) and recurrent wheezing (n = 545, n = 55; 10.1%) over a 2-year period were born to mothers with significantly lower postpartum maternal plasma concentrations of alpha-tocopherol, P = .016 and P = .007, respectively. In analyses of IQR increases, alpha-tocopherol was associated with decreased risk of wheezing (aOR 0.70 [95% CI 0.53,0.92]) and recurrent wheezing (aOR 0.63 [95% CI 0.42,0.95]). For gamma-tocopherol, the aOR for wheezing was 0.79 (95% CI 0.56-1.10) and the aOR for recurrent wheezing was 0.56 (95% CI 0.33-0.94, with nonmonotonic association). The association of alpha-tocopherol with wheezing was modified by gamma-tocopherol (P interaction = .05).

CONCLUSIONS:

Increases in postpartum maternal plasma alpha-tocopherol isoform concentrations were associated with decreased likelihood of wheezing over a 2-year period. Gamma-tocopherol modified this association.

Read More

Regulatory role of vitamin E in the immune system and inflammation

Lewis ED, Meydani SN, Wu D

IUBMB Life. 2018 Nov 30. doi: 10.1002/iub.1976. [Epub ahead of print]

Abstract

Vitamin E, a potent lipid-soluble antioxidant, found in higher concentration in immune cells compared to other cells in blood, is one of the most effective nutrients known to modulate immune function. Vitamin E deficiency has been demonstrated to impair normal functions of the immune system in animals and humans, which can be corrected by vitamin E repletion. Although deficiency is rare, vitamin E supplementation above current dietary recommendations has been shown to enhance the function of the immune system and reduce risk of infection, particularly in older individuals. The mechanisms responsible for the effect of vitamin E on the immune system and inflammation have been explored in cell-based, pre-clinical and clinical intervention studies. Vitamin E modulates T cell function through directly impacting T cell membrane integrity, signal transduction, and cell division, and also indirectly by affecting inflammatory mediators generated from other immune cells. Modulation of immune function by vitamin E has clinical relevance as it affects host susceptibility to infectious diseases such as respiratory infections, in addition to allergic diseases such as asthma. Studies examining the role of vitamin E in the immune system have typically focused on α-tocopherol; however, emerging evidence suggests that other forms of vitamin E, including other tocopherols as well as tocotrienols, may also have potent immunomodulatory functions. Future research should continue to identify and confirm the optimal doses for individuals at different life stage, health condition, nutritional status, and genetic heterogeneity. Future research should also characterize the effects of non-α-alpha-tocopherol vitamin E on immune cell function as well as their potential clinical application.

Read More

Vitamin E intake and risk of stroke: a meta-analysis

Cheng P, Wang L, Ning S, Liu Z, Lin H, Chen S, Zhu J

Br J Nutr. 2018 Nov;120(10):1181-1188. doi: 10.1017/S0007114518002647.

Abstract

Findings from observational studies on the associations between vitamin E intake and stroke risk remain controversial, and the dose-response relationship between vitamin E intake and risk of stroke remains to be determined. We conducted a meta-analysis of prospective studies aiming to clarify the relationships between vitamin E intake and risk of stroke. Relevant studies were identified by searching online databases through to June 2018. We computed summary relative risks (RR) with corresponding 95 % CI. Among 3156 articles retrieved from online databases and relevant bibliographies, nine studies involving 3284 events and 220 371 participants were included in the final analyses. High dietary vitamin E intake was inversely associated with the risk of overall stroke (RR=0·83, 95 % CI 0·73, 0·94), and with the risk of stroke for individuals who were followed-up for <10 (RR=0·84, 95 % CI 0·72, 0·91). There was a non-linear association between dietary vitamin E intake and stroke risk (P=0·0249). Omission of any single study did not alter the summary result. In conclusion, this meta-analysis suggests that there is a significant inverse relationship between dietary vitamin E intake and stroke risk. This meta-analysis provides evidence that a higher dietary vitamin E intake is associated with a lower stroke risk.

Read More

Effect of vitamin C and vitamin E on lung contusion: A randomized clinical trial study

Abdoulhossein D, Taheri I, Saba MA, Akbari H, Shafagh S, Zataollah A

Ann Med Surg (Lond). 2018 Nov 9;36:152-157. doi: 10.1016/j.amsu.2018.10.026. eCollection 2018 Dec.

Abstract

There is association between lung contusion (lC) and a progressive inflammatory response. The protective effect of vitamin C and vitamin E, as strong free radical scavengers on favourite outcome of (LC) in animal models, has been confirmed.

DESIGN:

to evaluate the effect of vitamins, E and C on arterial blood gas (ABG) and ICU stay, in (LC), with injury severity score (ISS) 18 ± 2, due to blunt chest trauma.

METHODS:

This study was a randomized, double-blind, placebo-controlled clinical trial. Patients with (ISS) 18 ± 2 blunt chest trauma, who meet criteria, participated in the study. A total of 80 patients from Feb 2015 to Jun2018and were randomly divided into 4 groups. Patients received intravenous vitamin E (1000IU mg), was (group I); intravenous vitamin C (500) (group II). Vitamin C + vitamin E = (group III), and intravenous distilled water = (control group) or (group IV). ABG, serum cortisol, and CRP levels were determined at baseline, 24 h and 48 h after the intervention.

RESULTS:

a significant decrease in ICU stay in group III compared to other groups (p < 0.001). Co-administration of vitamin C and vitamin Eshowed significant increases pH (values to reference range from acidemia”), oxygen pressure, and oxygen saturation in group III compared to other groups (p < 0.001). A significant decrease in carbon dioxide pressure was also detected after receiving vitamin C and vitamin E in group III, compared to other groups (p < 0.001). There was no significant difference cortisol and CRP levels between groups after the intervention.

CONCLUSION:

Co-administration of vitamin C and vitamin E, improve the ABG parameters and reduce ICU stay.

Read More

Page 1 of 1612345...10...Last »