Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control

Bin Shen, Pingping Zhou, Xue Jiao, Zhen Yao, Lidan Ye, Hongwei Yu

Nat Commun . 2020 Oct 14;11(1):5155. doi: 10.1038/s41467-020-18958-9.

Abstract

The diverse physiological functions of tocotrienols have listed them as valuable supplementations to α-tocopherol-dominated Vitamin E products. To make tocotrienols more readily available, tocotrienols-producing S. cerevisiae has been constructed by combining the heterologous genes from photosynthetic organisms with the endogenous shikimate pathway and mevalonate pathway. After identification and elimination of metabolic bottlenecks and enhancement of precursors supply, the engineered yeast can produce tocotrienols at yield of up to 7.6 mg/g dry cell weight (DCW). In particular, proper truncation of the N-terminal transit peptide from the plant-sourced enzymes is crucial. To further solve the conflict between cell growth and tocotrienols accumulation so as to enable high-density fermentation, a cold-shock-triggered temperature control system is designed for efficient control of two-stage fermentation, leading to production of 320 mg/L tocotrienols. The success in high-density fermentation of tocotrienols by engineered yeast sheds light on the potential of fermentative production of vitamin E tocochromanols.

Read More

Metabolic Benefits of Annatto-Extracted Tocotrienol on Glucose Homeostasis, Inflammation, and Gut Microbiome

Eunhee Chung, Moamen M Elmassry, Pratibha Kottapalli, Kameswara Rao Kottapalli, Gurvinder Kaur, Jannette M Dufour, Kandis Wright, Latha Ramalingam, Naima Moustaid-Moussa, Rui Wang, Abdul N Hamood, Chwan-Li Shen

Nutr Res . 2020 May;77:97-107. doi: 10.1016/j.nutres.2020.04.001. Epub 2020 Apr 17.

Abstract

Emerging evidence suggests that the gut microbiome plays an important role in the pathophysiology of both obesity and type 2 diabetes mellitus. We previously reported that dietary annatto-extracted tocotrienol exerts beneficial effects by modulating inflammatory responses in mice fed a high-fat diet (HFD). The purpose of this study was to test the hypothesis that tocotrienol supplementation when combined with an HFD would result in an altered gut microbiota composition. For 14 weeks, forty-eight male C57BL/6J mice were assigned to 4 groups-low-fat diet, HFD, HFD supplemented with annatto-extracted tocotrienol at 800 mg/kg diet (AT), and HFD supplemented with metformin at 200 mg/kg diet. Glucose homeostasis was assessed by glucose and insulin tolerance tests, serum and pancreas insulin levels, and histological assessments of insulin and glucagon in pancreatic tissue. The concentrations of adipokines were measured in white adipose tissues. For the gut microbiome analysis, cecal content was collected, DNA was extracted, and 16S rRNA gene sequencing was performed. AT supplementation improved glucose homeostasis and lowered resistin, leptin, and interleukin-6 levels in white adipose tissue. Relative to the HFD group, AT-supplemented mice showed a decrease in the Firmicutes to Bacteroidetes ratio and had a lower abundance of Ruminococcus lactaris, Dorea longicatena, and Lachnospiraceae family. The relative abundance of Akkermansia muciniphila was increased in the AT group compared to the low-fat diet group. The association between the metabolic improvements and the identified bacterial taxa suggests a potential metabolic modulation caused by AT supplementation through the gut microbiota composition in mice fed an HFD.

Read More

Vitamin E (α-tocopherol) consumption influences gut microbiota composition

Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Yoon Y

Int J Food Sci Nutr. 2019 Jul 12:1-5. doi: 10.1080/09637486.2019.1639637. [Epub ahead of print]

Abstract

This study evaluated if vitamin E consumption affects gut microbiota. Mice were grouped into control, low vitamin E (LV), and high vitamin E (HV). LV and HV were fed DL-α-tocopherol at 0.06 mg/20 g and 0.18 mg/20 g of body weight per day, respectively, for 34 days. Body weight of mice was measured before and after vitamin E treatment. Animals were sacrificed, liver, spleen, small intestine and large intestine collected, and weight and length were measured. Composition of gut microbiota was determined by microbiome analysis. Spleen weight index of LV was the highest. However, liver weight indices and intestinal lengths were not different. Body weights of LV group were higher than those of control. Ratio of Firmicutes to Bacteroidetes was different in LV compared to control and HV. These results indicate that low-level consumption of vitamin E increases spleen and body weight, and changes gut microbiota.

Read More