Effects of annatto-derived tocotrienol supplementation on osteoporosis induced by testosterone deficiency in rats.

Chin KY, Ima-Nirwana S.

BACKGROUND:

Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.

METHODS:

Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.

RESULTS:

There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).

CONCLUSION:

AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.

Read more

Rice Bran Extract Compensates Mitochondrial Dysfunction in a Cellular Model of Early Alzheimer’s Disease.

Hagl S, Grewal R, Ciobanu I, Helal A, Khayyal MT, Muller WE, Eckert GP.

Mitochondrial dysfunction plays an important role in brain aging and has emerged to be an early event in Alzheimer’s disease (AD), contributing to neurodegeneration and the loss of physical abilities seen in patients suffering from this disease. We examined mitochondrial dysfunction in a cell culture model of AD (PC12APPsw cells) releasing very low amyloid-β (Aβ40) levels and thus mimicking early AD stages. Our data show that these cells have impaired energy metabolism, low ATP levels, and decreased endogenous mitochondrial respiration. Furthermore, protein levels of PGC1α as well as of Mitofusin 1 were decreased. PC12APPsw cells also showed an increased mitochondrial content, probably due to an attempt to compensate the impaired mitochondrial function. Recent data showed that stabilized rice bran extract (RBE) protects from mitochondrial dysfunction in vivo [24]. To assess the effect of a RBE on mitochondrial function, we treated PC12APPsw cells for 24 h with RBE. Key components of RBE are oryzanols, tocopherols, and tocotrienols, all substances that have been found to exert beneficial effects on mitochondrial function. RBE incubation elevated ATP production and respiratory rates as well as PGC1α protein levels in PC12APPsw cells, thus improving the impaired mitochondrial function assessed in our cell culture AD model. Therefore, RBE represents to be a promising nutraceutical for the prevention of AD.

Read more

Gamma-tocotrienol attenuates high fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment.

Zhao L, Kang I, Fang X, Wang W, Lee MA, Hollins RR, Marshall MR, Chung S.

Background and Objective:We have previously demonstrated that gamma tocotrienol (γT3) potently inhibits adipocyte hyperplasia in human adipose-derived stem cells (hASCs). In this study, our objective was to investigate the γT3 effects on early onset obesity, inflammation, and insulin resistance in vivo.Methods:Young C57BL/6 J mice were fed a high fat (HF) diet supplemented with 0.05% γT3 for 4 weeks. The concentrations of γT3 in plasma and adipose tissue were measured by HPLC. Effects of γT3 on body weight gain, adipose volume, plasma levels of fasting glucose, insulin (ELISA), pro-inflammatory cytokines (mouse cytokine array), insulin signaling (western blotting), and gene expression (quantitative real-time PCR, qPCR) in liver and adipose tissue were examined. Influences of γT3 on [3H]-2-deoxyglucose uptake and LPS-mediated NFκB signaling (western blotting) were assessed in hASCs. Effects of γT3 on macrophage M1/M2 activation were investigated by qPCR in mouse bone marrow-derived macrophages.Results:After a 4 week treatment, γT3 accumulated in adipose tissue and reduced HF diet-induced weight gain in epididymal fat, mesenteric fat, and liver. Compared to HF diet-fed mice, HF+γT3-fed mice were associated with 1) decreased plasma levels of fasting glucose, insulin, and proinflammatory cytokines, 2) improved glucose tolerance, and 3) enhanced insulin signaling in adipose tissue. There were substantial decreases in macrophage specific markers, and MCP1 indicating that γT3 reduced recruitment of adipose tissue macrophages (ATMs). Additionally, γT3 treatment in human adipocytes resulted in 1) activation of insulin-stimulated glucose uptake and 2) a significant suppression of MAP kinase and NFκB activation. In parallel, γT3 treatment led to a reduction of LPS-mediated M1 macrophage polarization.Conclusion:Our results demonstrated that γT3 ameliorates HF diet-mediated obesity and insulin resistance by inhibiting systemic and adipose inflammation, as well as ATM recruitment.

Read more

Tocotrienol modulates crucial lipid metabolism-related genes in differentiated 3T3-L1 preadipocytes.

Burdeos GC, Nakagawa K, Abe T, Kimura F, Miyazawa T.

Obesity and other lipid metabolism-related diseases have become more prevalent in recent years due to drastic lifestyle changes and dietary patterns. Unsaturated vitamin E, tocotrienol (T3), represents one of the most fascinating naturally occurring compounds that has the potential to influence a broad range of mechanisms underlying abnormal lipid metabolism processes. However, its efficacy and mechanism have been uncertain due to scarcity of data concerning the effect of T3 on lipid metabolism. In this study, we report a series of fascinating experimental findings on how T3 affects lipid metabolism in differentiated 3T3-L1 preadipocytes. Treatment with T3 (25 μM), especially δ and γ isomers, inhibited the accumulation of triglyceride and lipid droplets in differentiated 3T3-L1 cells. This manifestation was supported by mRNA and protein expression of crucial lipid metabolism-related genes. The present study provides a novel set of data pertaining to the possibility of T3 as an anti-metabolic disorder agent.

Read more

Tocotrienol Rich Fraction Reverses Age-Related Deficits in Spatial Learning and Memory in Aged Rats.

Taridi NM, Abd Rani N, Abd Latiff A, Wan Ngah WZ, Mazlan M.

Little is known about the effect of vitamin E on brain function. Therefore, in this study we evaluated the effect of tocotrienol rich fraction (TRF) on behavioral impairment and oxidative stress in aged rats. Thirty-six male Wistar rats (young: 3-months-old; aged: 21-months-old) were treated with either the control (olive oil) or TRF (200 mg/kg) for 3 months. Behavioral studies were performed using the open field test and Morris water maze (MWM) task. Blood was taken for assessment of DNA damage, plasma malondialdehyde (MDA) and vitamin E, and erythrocyte antioxidant enzyme activity. Brains were also collected to measure vitamin E levels. Results showed that aged rats exhibited reduced exploratory activity, enhanced anxiety and decreased spatial learning and memory compared with young rats. DNA damage and plasma MDA were increased, and vitamin E levels in plasma and brain were reduced in aged rats. Aged rats supplemented with TRF showed a markedly reduced level of anxiety, improved spatial learning and memory, reduced amount and severity of DNA damage, a reduced level of MDA, and increased levels of antioxidant enzyme activity and plasma/brain vitamin E compared with age-matched controls. In conclusion, TRF supplementation reverses spatial learning and memory decline and decreases oxidative stress in aged rats.

Read more

Gamma-tocotrienol and hydroxy-chavicol synergistically inhibits growth and induces apoptosis of human glioma cells.

Abdul Rahman A, A Jamal AR, Harun R, Mohd Mokhtar N, Wan Ngah WZ.

Gamma-tocotrienol (GTT), an isomer of vitamin E and hydroxy-chavicol (HC), a major bioactive compound in Piper betle, has been reported to possess anti-carcinogenic properties by modulating different cellular signaling events. One possible strategy to overcome multi-drug resistance and high toxic doses of treatment is by applying combinational therapy especially using natural bioactives in cancer treatment.

METHODS:

In this study, we investigated the interaction of GTT and HC and its mode of cell death on glioma cell lines. GTT or HC alone and in combination were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) by [3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)- 2H- tetrazolium, inner salt] MTS assay. The interactions of each combination were evaluated by using the combination index (CI) obtained from an isobologram.

RESULTS:

Individually, GTT or HC displayed mild growth inhibitory effects against glioma cancer cell lines at concentration values ranging from 42-100 mug/ml and 75-119 mug/ml respectively. However, the combination of sub-lethal doses of GTT + HC dramatically enhanced the inhibition of glioma cancer cell proliferation and exhibited a strong synergistic effect on 1321N1 with CI of 0.55, and CI = 0.54 for SW1783. While in LN18 cells, moderate synergistic interaction of GTT + HC was observed with CI value of 0.73. Exposure of grade II, III and IV cells to combined treatments for 24 hours led to increased apoptosis as determined by annexin-V FITC/PI staining and caspase-3 apoptosis assay, showing caspase-3 activation of 27%, 7.1% and 79% respectively.

CONCLUSION:

In conclusion, combined treatments with sub-effective doses of GTT and HC resulted in synergistic inhibition of cell proliferation through the induction of apoptosis of human glioma cells in vitro.

Read more

Enhanced Solubility and Oral Bioavailability of γ-Tocotrienol Using a Self-Emulsifying Drug Delivery System (SEDDS).

Alqahtani S, Alayoubi A, Nazzal S, Sylvester PW, Kaddoumi A.

The aim of this study was to evaluate the in vitro and in vivo performance of γ-tocotrienol (γ-T3) incorporated in a self-emulsifying drug delivery system (SEDDS) and to compare its enhanced performance to a commercially available product, namely Tocovid Suprabio™ (hereafter Tocovid), containing tocotrienols. The solubilization of γ-T3 was tested in a dynamic in vitro lipolysis model followed by in vitro cellular uptake study for the lipolysis products. In addition, in vitro uptake studies using Caco2 cells were conducted at different concentrations of γ-T3 prepared as SEDDS, Tocovid, or mixed micelles. γ-T3 incorporated in SEDDS or Tocovid was orally administered to rats at different doses and absolute oral bioavailability from both formulations were determined. The dynamic in vitro lipolysis experiment showed about two fold increase in the solubilization of γ-T3 prepared as SEDDS compared to Tocovid, which correlated with higher cellular uptake in the subsequent uptake studies. In vitro cellular uptake and in vivo oral bioavailability studies have shown a twofold increase in the cellular uptake and oral bioavailability of γ-T3 incorporated in SEDDS compared to Tocovid as a result of improvement in its solubility and passive uptake as confirmed by in vitro studies. In conclusion, incorporation of γ-T3 in SEDDS formulation enhanced γ-T3 solubilization and passive permeability, thus its cellular uptake and oral bioavailability when compared to Tocovid.

Read more

Effects of topically applied tocotrienol on cataractogenesis and lens redox status in galactosemic rats.

Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM.

PURPOSE:

Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats.

METHODS:

In the first part of this study, we investigated the effects of topically applied microemulsion formulation of tocotrienol (TTE) using six concentrations ranging from 0.01% to 0.2%. Eight groups of Sprague-Dawley rats (n = 9) received distilled water, vehicle, or one of the six TTE concentrations as pretreatment topically twice daily for 3 weeks while on a normal diet. After pretreatment, animals in groups 2-8 received a 25% galactose diet whereas group 1 continued on the normal diet for 4 weeks. During this 4-week period, topical treatment continued as for pretreatment. Weekly slit-lamp examination was conducted to assess cataract progression. At the end of the experimental period, the animals were euthanized, and the proteins and oxidative stress parameters were estimated in the lenses. In the second part of the study, we compared the anticataract efficacy of the TTE with the liposomal formulation of tocotrienol (TTL) using five groups of Sprague-Dawley rats (n = 15) that received distilled water, TTE, TTL, or corresponding vehicle. The mode of administration and dosing schedule were the same as in study 1. Weekly ophthalmic examination and lens protein and oxidative stress estimates were performed as in study 1. Lens nitrosative stress was also estimated.

RESULTS:

During the 4-week treatment period, the groups treated with 0.03% and 0.02% tocotrienol showed slower progression of cataract compared to the vehicle-treated group (p<0.05), whereas the group treated with 0.2% tocotrienol showed faster progression of cataract compared to the vehicle-treated group (p<0.05). The lenticular protein content, malondialdehyde, superoxide dismutase, and catalase levels were normalized in the groups that received 0.03% and 0.02% tocotrienol. The lenticular reduced glutathione also showed a trend toward normalization in these groups. In contrast, the group treated with 0.2% tocotrienol showed increased lenticular oxidative stress. When the microemulsion and liposomal formulations were compared, the effects on cataract progression, lens oxidative and nitrosative stress, and lens protein content did not show significant differences.

CONCLUSIONS:

Topically applied tocotrienol within the concentration range of less than 0.05% and more than 0.01% tends to delay the onset and progression of cataract in galactose-fed rats by reducing lenticular oxidative and nitrosative stress. However, topical tocotrienol at a concentration of 0.2% and higher aggravates cataractogenesis in galactose-fed rats by increasing lens oxidative stress. The anticataract efficacy of 0.03% microemulsion of tocotrienol did not differ from its liposomal formulations at the same concentration.

Read more

Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats.

Radhakrishnan A, Tudawe D, Chakravarthi S, Chiew GS, Haleagrahara N.

Tocotrienols exhibit a significant anti-inflammatory and antioxidant effect in numerous human diseases. However, the anti-inflammatory and antioxidant effects of tocotrienols in arthritic conditions are not well documented. Therefore, the effect of γ-tocotrienol supplementation against oxidative stress and joint pathology in collagen-induced arthritis in rats was investigated in the present study. Adult female Dark Agouti rats were randomly divided into groups: Control, γ-tocotrienol alone, arthritis alone and arthritis with γ-tocotrienol. Arthritis was induced using 4 mg/kg body weight collagen in complete Freund’s adjuvant. The rats were treated orally with 5 mg/kg body weight of γ-tocotrienol between day 21 and day 45. After 45 days, serum C-reactive protein (CRP), tumor necrosis factor (TNF)-α, superoxide dismutase (SOD) and total glutathione (GSH) assays were conducted. γ-tocotrienol significantly reduced the arthritis-induced changes in body weight, CRP, TNF-α, SOD and the total GSH levels. There was a significant reduction in the arthritis-induced histopathological changes in the γ-tocotrienol treatment group. The data indicated that administration of γ-tocotrienol resulted in a significant antioxidant and anti-inflammatory effect on collagen-induced arthritis; therefore, γ-tocotrienol may have therapeutic potential as a long-term anti-arthritic agent in rheumatoid arthritis therapy.

Read more

Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice.

Nasr M, Nafee N, Saad H, Kazem A.

Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Epirubicin (EPI), an anthracycline derivative, is one of the main line treatments for HCC. However, serious side effects including cardiomyopathy and congestive heart failure limit its long term administration. Our main goal is to develop a delivery strategy that ensures improved efficacy of the chemotherapeutic agent together with reduced cardiotoxicity. In this context, EPI was loaded in chitosan-PLGA nanoparticles linked with asialofetuin (EPI-NPs) selectively targeting hepatocytes. In an attempt to reduce cardiotoxicity, targeted EPI-NPs were coadministered with tocotrienols. EPI-NPs significantly enhanced the antiproliferative effect compared to free EPI as studied on Hep G2 cell line. Nanoencapsulated EPI injected in HCC mouse model revealed higher p53-mediated apoptosis and reduced angiogenesis in the tumor. Combined therapy of EPI-NPs with tocotrienols further enhanced apoptosis and reduced VEGF level in a dose dependent manner. Assessment of cardiotoxicity indicated that EPI-NPs diminished the high level of proinflammatory cytokine tumor necrosis factor-α (TNF-α) as well as oxidative stress-induced cardiotoxicity as manifested by reduced level of lipid peroxidation products (TBARS) and nitric oxide (NO). EPI-NPs additionally restored the diminished level of superoxide dismutase (SOD) and reduced glutathione (GSH) in the heart. Interestingly, tocotrienols provided both antitumor activity and higher protection against oxidative stress and inflammation induced by EPI in the heart. This hepatocyte-targeted biodegradable nanoparticle/tocotrienol combined therapy represents intriguing therapeutic strategy for EPI providing not only superior efficacy but also higher safety levels.

Read more