Tocotrienol delays onset and progression of galactose-induced cataract in rat

Nurul Alimah ABDUL NASIR , Renu AGARWAL , Minaketan TRIPATHY, Renad ALYAUTDIN , Nafeeza MOHD ISMAIL

Aim: Tocotrienol (T3) is known to have potent antioxidant properties. Since
oxidative stress plays a major role in the cataract formation, we hypothesized that
T3 delays cataract development. We aimed to investigate effect of T3 eyedrop in
delaying onset and progression of galactose-induced cataract. Methods: 3 weeksold
Sprague-Dawley rats were divided into 8 groups. Group 1 received normal diet
while rest of the groups received 25% galactose diet. Groups 3-8 received one of 6
different doses of microemulsion of T3 ranges from 0.2-0.01% twice daily. Group
2 was similarly treated with vehicle. Pre-treatment was given for 3 weeks and was
continued for 4 weeks after starting the galactose diet. Slit lamp examination was
done biweekly to assess cataract progression. Cataractous changes were graded
from 0-4 according to progression of cortical vacuole formation to nuclear opacity.
Results: At week 1 of galactose diet, groups 3 and 4 had higher percentage of lenses
that progressed to stage 1B compared to group 2 in which progression was less
severe, whereas in groups 6 and 7, 10% and 25% lenses respectively remained in
stage 0. Groups 3 and 4 continued to show more advanced cataract progression
compared to group 2 in the following weeks until end of experimental period.
However, cataract progression was delayed in groups 6-8 during these subsequent
weeks. Conclusion: T3 delayed cataract progression at low doses but enhanced
cataract progression at higher doses.

Tocotrienol supplementation in postmenopausal osteoporosis: evidence from a laboratory study.

Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN.

OBJECTIVE:

Accelerated bone loss that occurs in postmenopausal women has been linked to oxidative stress and increased free radicals. We propose the use of antioxidants to prevent and reverse postmenopausal osteoporosis. This study aimed to examine the effects of tocotrienol, a vitamin E analog, on bone loss due to estrogen deficiency. Our previous study showed that tocotrienol increased the trabecular bone volume and trabecular number in ovariectomized rats. In the current study, we investigated the effects of tocotrienol supplementation on various biochemical parameters in a postmenopausal osteoporosis rat model.

MATERIALS AND METHODS:

A total of 32 female Wistar rats were randomly divided into four groups. The baseline group was sacrificed at the start of the study, and another group was sham operated. The remaining rats were ovariectomized and either given olive oil as a vehicle or treated with tocotrienol at a dose of 60 mg/kg body weight. After four weeks of treatment, blood was withdrawn for the measurement of interleukin-1 (IL1) and interleukin-6 (IL6) (bone resorbing cytokines), serum osteocalcin (a bone formation marker) and pyridinoline (a bone resorption marker).

RESULTS:

Tocotrienol supplementation in ovariectomized rats significantly reduced the levels of osteocalcin, IL1 and IL6. However, it did not alter the serum pyridinoline level.

CONCLUSION:

Tocotrienol prevented osteoporotic bone loss by reducing the high bone turnover rate associated with estrogen deficiency. Therefore, tocotrienol has the potential to be used as an anti-osteoporotic agent in postmenopausal women.

read more

γ-Tocotrienol-induced autophagy in malignant mammary cancer cells.

Tiwari RV, Parajuli P, Sylvester PW.

γ-Tocotrienol, a member of the vitamin E family of compounds, displays potent antiproliferative and cytotoxic effects in a variety of cancer cell types at treatment doses that have little or no effect on normal cell viability or growth. Autophagy is a tightly regulated lysosomal self-digested process that can either promote cell survival or programmed cell death, but the role of autophagy in mediating γ-tocotrienol-induced cytotoxicity in breast cancer is not presently completely understood. Mouse (+SA) and human (MCF-7 and MDA-MD-231) mammary tumor cells lines were exposed to 0-40 µmol/L γ-tocotrienol for a 24 h treatment period. γ-Tocotrienol treatment caused a relatively large increase in the accumulation of monodansylcadaverine (MDC)-labeled vacuoles, a marker of autophagosome formation, in all tumor cell lines. Results also showed that γ-tocotrienol treatment induced an increased conversion of microtubule-associated protein, 1A/1B-light chain 3, from its cytosolic form (LC3B-I) to its lipidated form (LC3B-II), increased Beclin-1 levels, and increased acridine orange staining as determined by flow cytometry analysis, providing further evidence of γ-tocotrienol-induced autophagy in these mammary cancer cell lines. In contrast, similar treatment with γ-tocotrienol was not found to increase autophagy marker expression in immortalized mouse (CL-S1) and human (MCF-10 A) normal mammary epithelial cell lines. Treatment with γ-tocotrienol also caused a reduction in PI3K/Akt/mTOR signaling and a corresponding increase in the Bax/Bcl-2 ratio, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase (PARP) levels in these cancer cell lines, suggesting that γ-tocotrienol-induced autophagy may be involved in the initiation of apoptosis. In summary, these findings demonstrate that the cytotoxic effects of γ-tocotrienol are associated with the induction of autophagy in a mouse and human mammary cancer cells.

Frataxin mRNA Isoforms in FRDA Patients and Normal Subjects: Effect of Tocotrienol Supplementation.

Abruzzo PM, Marini M, Bolotta A, Malisardi G, Manfredini S, Ghezzo A, Pini A, Tasco G, Casadio R.

Friedreich’s ataxia (FRDA) is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2, and FXN-3) in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression while not affecting FXN-1 and FXN-2 expression. Since no structural and functional details were available for FNX-2 and FXN-3, 3D models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex, and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms in human cells. Finally, in order to evaluate whether tocotrienol enhancement of FXN-3 was mediated by an increase in peroxisome proliferator-activated receptor- γ (PPARG), PPARG expression was evaluated. At a low dose of tocotrienol, the increase of FXN-3 expression appeared to be independent of PPARG expression. Our data show that it is possible to modulate the mRNA expression of the minor frataxin isoforms and that they may have a functional role.

Read more

Tocotrienol prevents AAPH-induced neurite degeneration in neuro2a cells.

Fukui K, Sekiguchi H, Takatsu H, Koike T, Koike T, Urano S.

OBJECTIVES:

Reactive oxygen species induce neurite degeneration before inducing cell death. However, the degenerative mechanisms have not yet been elucidated. While tocotrienols have a known neuroprotective function, the underlying mechanism remains unclear and may or may not involve antioxidant action. In this study, we hypothesize that free radical-derived membrane injury is one possible mechanism for inducing neurite degeneration. Therefore, we examined the potential neuroprotective effect of tocotrienols mediated through its antioxidant activity.

METHODS:

Mouse neuroblastoma neuro2a cells were used to examine the effect of the water-soluble free radical generator 2,2′-azobis(2-methylpropionamide) dihydrochloride (AAPH) on neurite dynamics. After 24 hours of AAPH treatment, cell viability, neurite number, and the number of altered neurites were measured in the presence or absence of α-tocotrienol.

RESULTS:

Treatment of neuro2a cells with a low concentration of AAPH induces neurite degeneration, but not cell death. Treatment with 5 µM α-tocotrienol significantly inhibited neurite degeneration in AAPH-treated neuro2a cells. Furthermore, morphological changes in AAPH-treated neuro2a cells were similar to those observed with colchicine treatment.

CONCLUSIONS:

α-Tocotrienol may scavenge AAPH-derived free radicals and alkoxyl radicals that are generated from AAPH-derived peroxyl radicals on cell membranes. Therefore, α-tocotrienol may have a neuroprotective effect mediated by its antioxidant activity.

Read more

Serum levels of vitamin E forms and risk of cognitive impairment in a Finnish cohort of older adults.

Mangialasche F, Solomon A, Kåreholt I, Hooshmand B, Cecchetti R, Fratiglioni L, Soininen H, Laatikainen T, Mecocci P, Kivipelto M.

BACKGROUND:

Vitamin E includes eight natural antioxidant compounds (four tocopherols and four tocotrienols), but α-tocopherol has been the main focus of investigation in studies of cognitive impairment and Alzheimer’s disease.

OBJECTIVE:

To investigate the association between serum levels of tocopherols and tocotrienols, markers of vitamin E oxidative/nitrosative damage (α-tocopherylquinone, 5-nitro-γ-tocopherol) and incidence of cognitive impairment in a population-based study. Design A sample of 140 non-cognitively impaired elderly subjects derived from the Cardiovascular Risk Factors, Aging, and Dementia (CAIDE) study was followed-up for 8years to detect cognitive impairment, defined as development of mild cognitive impairment (MCI) or Alzheimer’s dementia. The association between baseline serum vitamin E and cognitive impairment was analyzed with multiple logistic regression after adjusting for several confounders.

RESULTS:

The risk of cognitive impairment was lower in subjects in the middle tertile of the γ-tocopherol/cholesterol ratio than in those in the lowest tertile: the multiadjusted odds ratio (OR) with 95% confidence interval (CI) was 0.27 (0.10-0.78). Higher incidence of cognitive impairment was found in the middle [OR (95% CI): 3.41 (1.29-9.06)] and highest [OR (95% CI): 2.89 (1.05-7.97)] tertiles of the 5-NO2-γ-tocopherol/γ-tocopherol ratio. Analyses of absolute serum levels of vitamin E showed lower risk of cognitive impairment in subjects with higher levels of γ-tocopherol, β-tocotrienol, and total tocotrienols.

CONCLUSIONS:

Elevated levels of tocopherol and tocotrienol forms are associated with reduced risk of cognitive impairment in older adults. The association is modulated by concurrent cholesterol concentration. Various vitamin E forms might play a role in cognitive impairment, and their evaluation can provide a more accurate measure of vitamin E status in humans.

Read more

Tocotrienol (Unsaturated Vitamin E) Suppresses Degranulation of Mast Cells and Reduces Allergic Dermatitis in Mice.

Tsuduki T, Kuriyama K, Nakagawa K, Miyazawa T.

In this study, we examined whether tocotrienol (T3) reduces allergic dermatitis in mice and suppresses degranulation of mast cells. First, allergic dermatitis was examined in the atopic dermatitis model NC/Nga mouse. Allergic dermatitis was induced using picryl chloride in mice with and without administration of T3 (1 mg/day/mouse). Increases in scratching behavior, dermal thickening, and the serum histamine level were greatly reduced in mice treated with T3, indicating that T3 reduces allergic dermatitis in vivo. Next, the effect of T3 on degranulation of mast cells was examined, since these cells release bioactive substances such as histamine. T3 significantly suppressed degranulation of mast cells and significantly reduced histamine release. The effect of T3 on protein kinase C (PKC) activity was also measured, since suppression of this activity may be associated with the mechanism underlying the antidegranulation effect of T3. T3 significantly suppressed PKC activity. Therefore, we conclude that T3 suppresses degranulation of mast cells and reduces allergic dermatitis in mice through reduction of PKC activity.

Read more

Tocotrienol-adjuvanted dendritic cells inhibit tumor growth and metastasis: a murine model of breast cancer.

Abdul Hafid SR, Chakravarthi S, Nesaretnam K, Radhakrishnan AK.

Tocotrienol-rich fraction (TRF) from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC)-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL) from 4T1 cells (DC+TL) once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF) inhibited (p<0.05) tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC)-treated 4T1 cells produced higher (p<0.05) levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL) assay also showed enhanced tumor-specific killing (p<0.05) by CD8(+) T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.

Read more 

Novel Treatment of Leukemia Combines Tocotrienol with Statins

A potential novel treatment for leukemia which combines tocotrienol, the unsaturated form of Vitamin E with statins, has received a research award from the American Society of Hematology. The study is conducted by Ko Maung, a medical student at East Tennessee State University under the supervision of Dr K. Krishnan. According to Maung, tocotrienol can be effective in killing prostate cancer cells from previous studies; combining tocotrienol with statin may have synergistic effect in killing leukemia cells. The dosage and treatment duration will also be studied to minimise the side effects.

Both tocotrienol and statin act on the mevalonate pathway from which the lipid isoprenoid precursors (farnesyl, geranylgeranyl etc.) were produced. These isoprenoids facilitate membrane anchoring of cell signalling proteins including Ras / Raf etc. which mediate cancer cell proliferation. In addition, low level of cholesterol is associated with decreased level of Prostate Serum Antigen (PSA). Targeting the cholesterol / mevalonate synthesis pathway with the combination therapy is expected to enhance the anti-cancer effect of tocotrienol.

Read more

Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression.

Siddiqui S, Ahsan H, Khan MR, Siddiqui WA.

Toxicol Appl Pharmacol. 2013 Sep 13. pii: S0041-008X(13)00396-7. doi: 10.1016/j.taap.2013.09.004. [Epub ahead of print]

Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175-200 gm) were divided into four groups. The first group served as diabetic control, while the second and third group received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF.

Read more