α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion injury

Wallert M, Ziegler M, Wang X, Maluenda A, Xu X, Yap ML, Witt R, Giles C, Kluge S, Hortmann M, Zhang J, Meikle P, Lorkowski S, Peter K

Redox Biol. 2019 Aug 6;26:101292. doi: 10.1016/j.redox.2019.101292. [Epub ahead of print]

Abstract

OBJECTIVE:

Myocardial infarction (MI) is a leading cause of mortality and morbidity worldwide and new treatment strategies are highly sought-after. Paradoxically, reperfusion of the ischemic myocardium, as achieved with early percutaneous intervention, results in substantial damage to the heart (ischemia/reperfusion injury) caused by cell death due to aggravated inflammatory and oxidative stress responses. Chronic therapy with vitamin E is not effective in reducing the cardiovascular event rate, presumably through failing to reduce atherosclerotic plaque instability. Notably, acute treatment with vitamin E in patients suffering a MI has not been systematically investigated.

METHODS AND RESULTS:

We applied alpha-tocopherol (α-TOH), the strongest anti-oxidant form of vitamin E, in murine cardiac ischemia/reperfusion injury induced by ligation of the left anterior descending coronary artery for 60 min. α-TOH significantly reduced infarct size, restored cardiac function as measured by ejection fraction, fractional shortening, cardiac output, and stroke volume, and prevented pathological changes as assessed by state-of-the-art strain and strain-rate analysis. Cardioprotective mechanisms identified, include a decreased infiltration of neutrophils into cardiac tissue and a systemic anti-inflammatory shift from Ly6Chigh to Ly6Clow monocytes. Furthermore, we found a reduction in myeloperoxidase expression and activity, as well as a decrease in reactive oxygen species and the lipid peroxidation markers phosphatidylcholine (PC) (16:0)-9-hydroxyoctadecadienoic acid (HODE) and PC(16:0)-13-HODE) within the infarcted tissue.

CONCLUSION:

Overall, α-TOH inhibits ischemia/reperfusion injury-induced oxidative and inflammatory responses, and ultimately preserves cardiac function. Therefore, our study provides a strong incentive to test vitamin E as an acute therapy in patients suffering a MI.

Read More

Vitamin E D-alpha-tocopheryl polyethylene glycol 1000 succinate-conjugated liposomal docetaxel reverses multidrug resistance in breast cancer cells

Li N, Fu T, Fei W, Han T, Gu X, Hou Y, Liu Y, Yang J

J Pharm Pharmacol. 2019 Aug;71(8):1243-1254. doi: 10.1111/jphp.13126. Epub 2019 Jun 18.

Abstract

OBJECTIVES:

Multidrug resistance (MDR) remains a primary challenge in breast cancer treatment. In the present study, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS)-coated docetaxel-loaded liposomes were developed as a novel drug delivery system to reverse MDR and enhance breast cancer therapy compared with the traditional liposomes, DSPE-mPEG-coated liposomes (stealth liposomes) and commercial Taxotere® .

KEY FINDINGS:

Liposomes were prepared by thin – film dispersion method. Evaluations were performed using human breast cancer MCF-7 and resistant MCF-7/ADR cells. The reversal multidrug-resistant effect was assessed by P-gp inhibition assay, cytotoxicity, cellular uptake and apoptosis assay.

RESULTS:

The TPGS-chol-liposomes were of an appropriate particle size (140.0 ± 6.0 nm), zeta potential (-0.196 ± 0.08 mv), high encapsulation efficiency (99.0 ± 0.9) and favourable in vitro sustained release. The TPGS-coated liposomes significantly improved cytotoxicity and increased the intracellular accumulation of docetaxel in both types of breast cancer cells. The TPGS-coated liposomes were confirmed to induce apoptosis via a synergistic effect between docetaxel and TPGS. It was demonstrated that TPGS enhanced the intracellular accumulation of drug by inhibiting overexpressed P-glycoprotein.

CONCLUSIONS:

The TPGS-conjugated liposomes showed significant advantages in vitro compared with the PEG-conjugated liposomes. The TPGS-conjugated liposomes could reverse the MDR and enhance breast cancer therapy.

Read More

Role of Vitamin E for Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes: A Randomized Controlled Trial

Bril F, Biernacki DM, Kalavalapalli S, Lomonaco R, Subbarayan SK, Lai J, Tio F, Suman A, Orsak BK, Hecht J, Cusi K

Diabetes Care. 2019 Aug;42(8):1481-1488. doi: 10.2337/dc19-0167. Epub 2019 May 21.

Abstract

OBJECTIVE:

While vitamin E has shown to improve nonalcoholic steatohepatitis (NASH) in patients without diabetes, information on patients with type 2 diabetes mellitus (T2DM) is lacking. The aim of this study was to determine whether vitamin E, alone or combined with pioglitazone, improves histology in patients with T2DM and NASH.

RESEARCH DESIGN AND METHODS:

This was a proof-of-concept, randomized, double-blind, placebo-controlled trial conducted from 2010 to 2016. Patients with T2DM and biopsy-proven NASH (n = 105) were randomized to vitamin E 400 IU b.i.d., vitamin E 400 IU b.i.d. plus pioglitazone 45 mg/day, or placebo. Eighty-six patients completed the 18-month study. The primary end point was a two-point reduction in the nonalcoholic fatty liver disease activity score from two different parameters, without worsening of fibrosis. Secondary outcomes were resolution of NASH without worsening of fibrosis, individual histological scores, and metabolic parameters.

RESULTS:

More patients on combination therapy achieved the primary outcome versus placebo (54% vs. 19%, P = 0.003) but not with vitamin E alone (31% vs. 19%, P = 0.26). Both groups showed improvements in resolution of NASH compared with placebo (combination group: 43% vs. 12%, P = 0.005; vitamin E alone: 33% vs. 12%, P = 0.04). While steatosis assessed by histology improved with combination therapy (P < 0.001) and vitamin E alone (P = 0.018), inflammation (P = 0.018) and ballooning (P = 0.022) only improved with combination therapy. No improvement in fibrosis was observed in any group.

CONCLUSIONS:

In this proof-of-concept study, combination therapy was better than placebo in improving liver histology in patients with NASH and T2DM. Vitamin E alone did not significantly change the primary histological outcome.

Read More

Preventative Effects of Vitamin E on Testicular Damage and Sperm Parameters in the First-Generation Mice Pups due to Pre- and Postnatal Mancozeb Exposure

Saddein E, Haghpanah T, Nematollahi-Mahani SN, Seyedi F, Ezzatabadipour M

J Toxicol. 2019 Aug 1;2019:4763684. doi: 10.1155/2019/4763684. eCollection 2019.

Abstract

The present study aimed to evaluate the effects of vitamin E on mancozeb-induced testis damage of the first-generation pups during intrauterine and lactating periods. Two groups of pregnant NMRI mice received 500 mg/kg mancozeb (MNZ) as MNZ group and 200 mg/kg vitamin E as MNZ+vit.E group before receiving MNZ. In addition, a vehicle and a control group were designed every other day in gestation and lactation periods. The male pups from each group were maintained until adulthood (8-10 W). The left testes and epididymides were removed following the sacrifice of the pups. Then, they were weighed, and sperm parameters including number, viability, motility, and morphology and testis structure were evaluated. A significant decrease occurred in sperm parameters of the mancozeb-treated pups compared to the control and vehicle groups. Treatment with vitamin E reversed the deleterious effects of MNZ to a nearly normal condition. Testis parameters including the weight, gonadosomatic index, seminiferous tubule diameters, and Johnsen’s score, as well as the number of germ cells such as spermatogonia, spermatocyte, spermatid, and Sertoli, decreased significantly in the MNZ group, compared to the amount in the control and vehicle groups. Interestingly, the treatment with vitamin E was reversed in most of these parameters. Based on the results, the exposure of pups to mancozeb during pregnancy and lactating periods negatively affects the reproductive system of male pups. However, the coadministration of vitamin E could prevent the deleterious effects of mancozeb on sperm and testis parameters.

Read More

Vitamin E δ-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIPs

Francois RA, Zhang A, Husain K, Wang C, Hutchinson S, Kongnyuy M, Batra SK, Coppola D, Sebti SM, Malafa MP

Cancer Cell Int. 2019 Jul 22;19:189. doi: 10.1186/s12935-019-0876-0. eCollection 2019.

Abstract

BACKGROUND:

Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects.

METHODS:

We report a novel function of VEDT in augmenting tumor necrosis factor-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in pancreatic cancer cells. The effects of VEDT were shown by its ability to trigger caspase-8-dependent apoptosis in pancreatic cancer cells.

RESULTS:

When combined with TRAIL, VEDT significantly augmented TRAIL-induced apoptosis of pancreatic cancer cells. VEDT decreased cellular FLICE inhibitory protein (c-FLIP) levels without consistently modulating the expression of decoy death receptors 1, 2, 3 or death receptors 4 and 5. Enforced expression of c-FLIP substantially attenuated VEDT/TRAIL-induced apoptosis. Thus, c-FLIP reduction plays an important part in mediating VEDT/TRAIL-induced apoptosis. Moreover, VEDT increased c-FLIP ubiquitination and degradation but did not affect its transcription, suggesting that VEDT decreases c-FLIP levels through promoting its degradation. Of note, degradation of c-FLIP and enhanced TRAIL-induced apoptosis in pancreatic cancer cells were observed only with the anticancer bioactive vitamin E compounds δ-, γ-, and β-tocotrienol but not with the anticancer inactive vitamin E compounds α-tocotrienol and α-, β-, γ-, and δ-tocopherol.

CONCLUSIONS:

c-FLIP degradation is a key event for death receptor-induced apoptosis by anticancer bioactive vitamin E compounds in pancreatic cancer cells. Moreover, VEDT augmented TRAIL inhibition of pancreatic tumor growth and induction of apoptosis in vivo. Combination therapy with TRAIL agonists and bioactive vitamin E compounds may offer a novel strategy for pancreatic cancer intervention.

Read More

Vitamin E and Alzheimer’s disease: what do we know so far?

Browne D, McGuinness B, Woodside JV, McKay GJ

Clin Interv Aging. 2019 Jul 18;14:1303-1317. doi: 10.2147/CIA.S186760. eCollection 2019.

Abstract

Vitamin E has been proposed as a potential clinical intervention for Alzheimer’s disease (AD) given the plausibility of its various biological functions in influencing the neurodegenerative processes associated with the condition. The tocopherol and tocotrienol isoforms of vitamin Ehave multiple properties including potent antioxidant and anti-inflammatory characteristics, in addition to influences on immune function, cellular signalling and lowering cholesterol. Several of these roles offer a theoretical rationale for providing benefit for the treatment of AD-associated pathology. Diminished circulating concentrations of vitamin E have been demonstrated in individuals with AD. Reduced plasma levels have furthermore been associated with an increased risk of AD development while intake, particularly from dietary sources, may limit or reduce the rate of disease progression. This benefit may be linked to synergistic actions between vitamin E isoforms and other micronutrients. Nevertheless, randomised trials have found limited and inconsistent evidence of vitamin E supplementation as an effective clinical intervention. Thus, despite a strong rationale in support of a beneficial role for vitamin E for the treatment of AD, the evidence remains inconclusive. Several factors may partly explain this discrepancy and represent the difficulties of translating complex laboratory evidence and dietary interactions into clinical interventions. Methodological design limitations of existing randomised trials and restrictions to supplementation with a single vitamin E isoform may also limit the influence of effect. Moreover, several factors influence individual responsiveness to vitamin E intake and recent findings suggest variation in the underlying genetic architecture attenuates vitamin E biological availability and activity which likely contributes to the variation in clinical responsiveness and the failure of randomised trials to date. Importantly, the clinical safety of vitamin E remains controversial and warrants further investigation.

Read More

Effect of atherosclerosis and the protective effect of the antioxidant vitamin E on the rabbit cerebellum

Elbeltagy MAF, Elkholy WB, Salman AS

Microscopy (Oxf). 2019 Jul 15. pii: dfz023. doi: 10.1093/jmicro/dfz023. [Epub ahead of print]

Abstract

BACKGROUND:

Atherosclerosis is a major cardiovascular disease and one of the commonest causes of mortality in the world. Speech, balance, fine motor control and cognition are affected by atherosclerosis of cerebellar arteries. This study investigated the protective role of vitamin E against induced atherosclerosis in the rabbit cerebellum.

Read More

Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma

Srivastava S, Gupta S, Mohammad S, Ahmad I

J Cancer Res Ther. 2019 Jul-Sep;15(3):480-490. doi: 10.4103/jcrt.JCRT_263_18.

Abstract

OBJECTIVE:

The aim of the study to develop surface modified targeted moiety α-tocopherol (α-t) encapsulated with 5-fluorouracil (5-FU)-poly-D, L-lactic-co-glycolic acid nanoparticles (PLGA NPs) toward the anticancer activity against oral squamous cell carcinoma (OSCC).

MATERIALS AND METHODS:

5-FU was conjugated with the polymer, PLGA by ionic cross-linking and α-tocopherol use as a functionalized surface moiety. Characterization, drug entrapment efficiency, and in-vitro drug release system were optimized at different pH 7.4 and pH 4.5. The in-vitro cell was performed to optimize the anticancer activity through MTT assay and apoptotic staining assay was also performed by flow cytometry to evaluate the cellular apoptotic activity and cellular uptake.

RESULTS:

The particle size was distributed within an average range of 145-162 nm, the polydispersity index values lie 0.16-0.30, and the surface charge was at the negative side, -17mV to -23mV. The in vitro drug release system showed more sympathetic situation at pH 7.4 as compared to pH 4.5, for targeted NPs, approximately 86% and 69%, respectively. The non-targeted 5-FU-PLGA NPs showed drug release of 83% and 64% at pH 7.4 and 4.5 subsequently. In vitro anticancer activity confirmed the intense inhibition by α-t-FU-PLGA NPs of 79.98% after 96 h treatment of SCC15 cells and confirmed the steady-state inhibition of 83.74% after 160 h incubation in comparison to 5-FU-PLGA NPs. Subsequently, the early apoptosis, 27.98%, and 16.45%, and late apoptosis, 47.29%, and 32.57%, suggested the higher apoptosis rate in targeted NPs against OSCC.

CONCLUSIONS:

The surface modified α-t-FU-PLGA NP was treated over SCC15 cells, and the oral cancer cells have shown the high intensity of cellular uptake, which confirmed that the target moiety has successfully invaded over the surface of cancer cells and shown advanced targeted delivery against OSCC.

Read More

Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents

Fontana F, Raimondi M, Marzagalli M, Moretti RM, Marelli MM, Limonta P

Recent Pat Anticancer Drug Discov. 2019;14(1):5-18. doi: 10.2174/1574892814666190116111827.

Abstract

BACKGROUND:

Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties.

OBJECTIVE:

The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy.

METHODS:

Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty.

RESULTS:

TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability.

CONCLUSION:

The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.

Read More

A Redox-Inactive Derivative of Tocotrienol Suppresses Tumor Growth of Mesothelioma Cells in a Xenograft Model

Sato A, Arai T, Fusegi M, Ando A, Yano T

Biol Pharm Bull. 2019;42(6):1034-1037. doi: 10.1248/bpb.b18-00924.

Abstract

Malignant mesothelioma (MM) is an aggressive cancer with poor prognosis. We focused on the anticancer activity of tocotrienol (T3) and have reported that a new redox-inactive T3 derivative (6-O-carboxypropyl-α-tocotrienol; T3E) exerts stronger inhibitory effects on MM cell growth than that of T3 in vitro. Furthermore, we have revealed some mechanisms of T3E that are involved in anti-MM effects. However, the effect of T3E in vivo remains unclear. In this study, we compared the plasma concentrations of T3E to that of T3 using mice to clarify differences in pharmacokinetics. Blood was sequentially collected after oral administration of T3 or T3E, and plasma concentrations were analyzed by HPLC. The area under the plasma T3 and T3E concentration-time curve from 0 to 24 h (AUC0-24 h) of T3E was two times higher than that of T3. In addition, we evaluated the effect of T3E oral administration on tumor growth using a xenograft model of mice that were transplanted with human MM cells (H2052 cell line). Tumor volume was significantly reduced without body weight loss in mice orally administered 150 mg/kg T3E once per 2 d for 10 d, which suggests that T3E has potential anti-MM effects.

Read More

Page 3 of 11712345...102030...Last »