Comparing the effects of vitamin E tocotrienol-rich fraction supplementation and α-tocopherol supplementation on gene expression in healthy older adults

Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW

Clinics (Sao Paulo). 2019 Mar 7;74:e688. doi: 10.6061/clinics/2019/e688.



This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults.


A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.


The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.


Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.

Read More

Gamma-Tocotrienol Protects the Intestine from Radiation Potentially by Accelerating Mesenchymal Immune Cell Recovery

Garg S, Sadhukhan R, Banerjee S, Savenka AV, Basnakian AG, McHargue V, Wang J, Pawar SA, Ghosh SP, Ware J, Hauer-Jensen M, Pathak R

Antioxidants (Basel). 2019 Mar 6;8(3). pii: E57. doi: 10.3390/antiox8030057.


Natural antioxidant gamma-tocotrienol (GT3), a vitamin E family member, provides intestinal radiation protection. We seek to understand whether this protection is mediated via mucosal epithelial stem cells or sub-mucosal mesenchymal immune cells. Vehicle- or GT3-treated male CD2F1 mice were exposed to total body irradiation (TBI). Cell death was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Villus height and crypt depth were measured with computer-assisted software in tissue sections. Functional activity was determined with an intestinal permeability assay. Immune cell recovery was measured with immunohistochemistry and Western blot, and the regeneration of intestinal crypts was assessed with ex vivo organoid culture. A single dose of GT3 (200 mg/kg body weight (bwt)) administered 24 h before TBI suppressed cell death, prevented a decrease in villus height, increased crypt depth, attenuated intestinal permeability, and upregulated occludin level in the intestine compared to the vehicle treated group. GT3 accelerated mesenchymal immune cell recovery after irradiation, but it did not promote ex vivo organoid formation and failed to enhance the expression of stem cell markers. Finally, GT3 significantly upregulated protein kinase B or AKT phosphorylation after TBI. Pretreatment with GT3 attenuates TBI-induced structural and functional damage to the intestine, potentially by facilitating intestinal immune cell recovery. Thus, GT3 could be used as an intestinal radioprotector.

Read More

The Role of Tocotrienol in Protecting Against Metabolic Diseases

Pang KL, Chin KY

Molecules. 2019 Mar 6;24(5). pii: E923. doi: 10.3390/molecules24050923.


Obesity is a major risk factor for diabetes, and these two metabolic conditions cause significant healthcare burden worldwide. Chronic inflammation and increased oxidative stress due to exposure of cells to excess nutrients in obesity may trigger insulin resistance and pancreatic β-cell dysfunction. Tocotrienol, as a functional food component with anti-inflammatory, antioxidant, and cell signaling-mediating effects, may be a potential agent to complement the current management of obesity and diabetes. The review aimed to summarize the current evidence on the anti-obesity and antidiabetic effects of tocotrienol. Previous studies showed that tocotrienol could suppress adipogenesis and, subsequently, reduce body weight and fat mass in animals. This was achieved by regulating pathways of lipid metabolism and fatty acid biosynthesis. It could also reduce the expression of transcription factors regulating adipogenesis and increase apoptosis of adipocytes. In diabetic models, tocotrienol was shown to improve glucose homeostasis. Activation of peroxisome proliferator-activated receptors was suggested to be responsible for these effects. Tocotrienol also prevented multiple systemic complications due to obesity and diabetes in animal models through suppression of inflammation and oxidative stress. Several clinical trials have been conducted to validate the antidiabetic of tocotrienol, but the results were heterogeneous. There is no evidence showing the anti-obesity effects of tocotrienol in humans. Considering the limitations of the current studies, tocotrienol has the potential to be a functional food component to aid in the management of patients with obesity and diabetes.

Read More

Anticancer effects of methotrexate in combination with α‑tocopherol and α‑tocopherol succinate on triple‑negative breast cancer

Wei CW, Yu YL, Chen YH, Hung YT, Yiang GT

Oncol Rep. 2019 Mar;41(3):2060-2066. doi: 10.3892/or.2019.6958. Epub 2019 Jan 9.


Triple‑negative breast cancers (TNBCs) lack the estrogen receptor, progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Therefore, hormone or targeted therapies are not effective in the treatment of TNBC and thus the development of novel therapeutic strategies is crucial. Methotrexate (MTX), a folate antagonist, has been used in the treatment of various types of cancer; however, the anticancer effects of MTX treatment on breast cancer have thus far been ineffective. Vitamin E variants and derivatives have been applied for cancer therapy. Previous studies have indicated that vitamin E variants and derivatives exert distinct anticancer effects on different types of cancer. However, whether MTX plus vitamin E variants or its derivatives can inhibit TNBC remains unclear. The aim of the present study was to examine the anticancer effects and mechanisms of action of MTX in combination with vitamin E variants (α‑tocopherol) and derivatives (α‑tocopherol succinate) on TNBC. In the present study, MTT assay and western blot analysis were used to determine the cell survival rates and protein levels. The results demonstrated that combination treatment with MTX and α‑tocopherol suppressed TNBC cell proliferation. In addition, various concentrations of MTX exerted distinct cytotoxic effects on α‑tocopherol succinate‑treated cells. Furthermore, high‑dose MTX enhanced α‑tocopherol succinate‑induced anticancer activity; however, low‑dose MTX inhibited α‑tocopherolsuccinate‑induced anticancer activity. The present study also demonstrated that caspase‑3 activation and poly(adenosine diphosphate‑ribose) polymerase cleavage were observed in the α‑tocopherol succinate/MTX‑treated cells. In conclusion, the findings of the present study demonstrated that high‑dose MTX enhanced anticancer activity in α‑TOS‑treated TNBC, while low‑dose MTX reduced anticancer activity in α‑TOS‑treated TNBC.

Read More

Delta tocotrienol in recurrent ovarian cancer. A phase II trial

Thomsen CB, Andersen RF, Steffensen KD, Adimi P, Jakobsen A

Pharmacol Res. 2019 Mar;141:392-396. doi: 10.1016/j.phrs.2019.01.017. Epub 2019 Jan 9.


Delta tocotrienol has anti-neoplastic activity as demonstrated in several in-vitro and in-vivo investigations. The effect relies on inhibition of different pathways. It also has antiangiogenic activity, and an additive effect to bevacizumab may be expected. The present study was a phase II trial of bevacizumab combined with tocotrienol in chemotherapy refractory ovarian cancer. The study also included analysis of circulating tumor specific HOXA9 methylated DNA (HOXA9 meth-ctDNA) during treatment. The study included 23 patients. The rate of disease stabilization was 70% with very low toxicity. The median PFS was 6.9 months and the median OS 10.9 months, which is rather high compared to the current literature. A division of the patients according to level of HOXA9 meth-ctDNA already after the first cycle of chemotherapy resulted in two groups of patients with different prognoses. Patients with an increasing level of HOXA9 meth-ctDNA had a median PFS and OS of 1.4 and 4.3 months, respectively, compared to 7.8 and 12 months in the group with stable or decreasing levels. The combination of bevacizumab and tocotrienol is potent in chemotherapy refractory ovarian cancer. The level of HOXA9 meth-ctDNA after one cycle of chemotherapy holds important prognostic information.

Read More

A novel nitroalkene-α-tocopherol analogue inhibits inflammation and ameliorates atherosclerosis in Apo E knockout mice

Rodriguez-Duarte J, Galliussi G, Dapueto R, Rossello J, Malacrida L, Kamaid A, Schopfer FJ, Escande C, López GV, Batthyány C

Br J Pharmacol. 2019 Mar;176(6):757-772. doi: 10.1111/bph.14561. Epub 2019 Feb 3.



Atherosclerosis is characterized by chronic low-grade inflammation with concomitant lipid accumulation in the arterial wall. Anti-inflammatory and anti-atherogenic properties have been described for a novel class of endogenous nitroalkenes (nitrated-unsaturated fatty acids), formed during inflammation and digestion/absorption processes. The lipid-associated antioxidant α-tocopherol is transported systemically by LDL particles including to the atheroma lesions. To capitalize on the overlapping and complementary salutary properties of endogenous nitroalkenes and α-tocopherol, we designed and synthesized a novel nitroalkene-α-tocopherol analogue (NATOH) to address chronic inflammation and atherosclerosis, particularly at the lesion sites.


We synthesized NATOH, determined its electrophilicity and antioxidant capacity and studied its effects over pro-inflammatory and cytoprotective pathways in macrophages in vitro. Moreover, we demonstrated its incorporation into lipoproteins and tissue both in vitro and in vivo, and determined its effect on atherosclerosis and inflammatory responses in vivo using the Apo E knockout mice model.


NATOH exhibited similar antioxidant capacity to α-tocopherol and, due to the presence of the nitroalkenyl group, like endogenous nitroalkenes, it exerted electrophilic reactivity. NATOH was incorporated in vivo into the VLDL/LDL lipoproteins particles to reach the atheroma lesions. Furthermore, oral administration of NATOH down-regulated NF-κB-dependent expression of pro-inflammatory markers (including IL-1β and adhesion molecules) and ameliorated atherosclerosis in Apo E knockout mice.


In toto, the data demonstrate a novel pharmacological strategy for the prevention of atherosclerosis based on a creative, natural and safe drug delivery system of a non-conventional anti-inflammatory compound (NATOH) with significant potential for clinical application.

Read More

Enhanced Survival in Mice Exposed to Ionizing Radiation by Combination of Gamma-Tocotrienol and Simvastatin

Pathak R, Kumar VP, Hauer-Jensen M, Ghosh SP

Mil Med. 2019 Mar 1;184(Supplement_1):644-651. doi: 10.1093/milmed/usy408.


Ionizing radiation exposure is a major concern for active military service members, as well as civilian population. Considering that the exposure is not predictable, it is imperative that strategies to counteract radiation damage must be discovered. Recent in vitro studies performed in our laboratory demonstrated that the vitamin E analog gamma-tocotrienol (GT3) in combination with cholesterol-lowering drugs (Statins), synergistically induced endothelial thrombomodulin, an anticoagulant with radio-protective efficacy. It was hypothesized that the combination of treatment with both GT3 along with Statins would provide better radiation protection in vivo than each drug individually. CD2F1 mice were injected subcutaneously with either vehicle or single dose of GT3 (200 mg/kg body weight) 24 hours before irradiation followed by oral or subcutaneous administration of various doses of simvastatin (25, 50, and 100 mg/kg body weight) before exposure to lethal doses (11.5 and 12 Gy) of Cobalt-60 (60Co) gamma-irradiation. The combined treatment group exhibited enhanced radiation lethality protection substantially, accelerated white blood cell recovery, and augmented restoration of bone marrow cellularity when compared to the animals treated with either drug exclusively. This information clearly suggests that combined treatment could be used as a safeguard for military personnel from exposure to harmful ionizing radiation.

Read More

Dietary vitamin E affects small intestinal histomorphology, digestive enzyme activity, and the expression of nutrient transporters by inhibiting proliferation of intestinal epithelial cells within jejunum in weaned piglets1

Chen C, Wang Z, Li J, Li Y, Huang P, Ding X, Yin J, He S, Yang H, Yin Y

J Anim Sci. 2019 Mar 1;97(3):1212-1221. doi: 10.1093/jas/skz023.


Vitamin E (VE) is an indispensable vitamin in piglet feed formula. Among other things, it affects tissues including small intestine tissues and in particular its major unit intestinal epithelial cells. Previously, limited in vivo experiments have focused on the effect of VE on the intestine, particularly digestion and absorption. VE has been shown to inhibit proliferation of some types of cells. This experiment was conducted to test the hypothesis that VE affects intestinal functions by influencing the intestinal epithelial cell proliferation. Thirty 21-d old weaned [(Yorkshire × Landrace) × Duroc] piglets with BWs of 6.36 ± 0.55 kg were randomly divided into five VE-containing feeding formula groups. The treatments were (i) 0 IU (control), (ii) 16 IU, (iii) 32 IU, (iv) 4. 80 IU, and (v) 5. 160 IU. The treatments lasted 14 d. At the end of the experiment, all subjects were sacrificed to obtain blood and tissue samples. The results suggest that VE did not affect the growth performance. VE did tend to decrease jejunal crypt depth (linear, P = 0.056) and villus width (linear, P < 0.05). Sucrase activity significantly decreased in the adding 80 IU VE compared with the control (P < 0.05). Jejunal crypt, cell proliferation in 80 IU group significantly decreased compared with the control group (P < 0.05). This study suggests that dietary VE may affect intestinal morphology and functions by inhibiting weaned piglet jejunal epithelial cell proliferation.

Read More

Vitamin E supplementation in chronically hemodialyzed patients – influence on blood hemoglobin and plasma (anti)oxidant status

Ruskovska T, Pop-Kostova A, Hjm Jansen E, Antarorov R, Gjorgoski I

Int J Vitam Nutr Res. 2019 Feb 27:1-10. doi: 10.1024/0300-9831/a000471. [Epub ahead of print]



Disturbed oxidant/antioxidant status is involved in pathogenesis of anemia in end stage renal disease. There is evidence that vitamin E supplementation can increase blood hemoglobin in chronically hemodialyzed patients. However, the interindividual variation in response to the supplementation has not been fully addressed.


24 chronically hemodialyzed patients were supplemented with vitamin E (400 IU/day) in a period of two months. They had already been treated with erythropoiesis stimulating agents (ESA) and iron on a long-term basis, which was continued during the study period. A group of 20 healthy volunteers served as control subjects. Complete blood count, general biochemistry assays, the redox status by total thiols, oxidative stress by reactive oxygen metabolites, antioxidant status by biological antioxidant potential, and vitamin E (α- and γ- tocopherol) were measured before the start of supplementation, one month and two months later.


Overall, the vitamin E supplementation did not cause an increase of blood hemoglobin, hematocrit or red blood cells. However, 50 % of the patients with basal blood hemoglobin below 12.0 g/dL (N = 10) responded to the supplementation with its continuous increase. In addition, vitamin E exhibited a slight prooxidant effect only in the subgroup of patients with basal blood hemoglobin of ≥ 12.0 g/dL, two months after the start of supplementation (decreased total thiols: 300 ± 31 vs. 277 ± 36 µmol/L, p < 0.05; increased reactive oxygen metabolites: 183 ± 140 vs. 287 ± 112 CARR U, p > 0.05; decreased biological antioxidant potential: 2278 ± 150 vs. 2171 ± 126 µEq/L, p < 0.025), which coincided with their significantly increased serum α-tocopherol concentrations in comparison to the patients with basal blood hemoglobin below 12.0 g/dL (41.3 ± 7.2 vs. 59.9 ± 19.2 µmol/L, p < 0.025).


When treated with ESA and iron on a long-term basis, the response to the vitamin E supplementation in chronically hemodialyzed patients is largely dependent on their basal blood hemoglobin and serum vitamin E concentrations.

Read More

Nutritional modulation of the antioxidant capacities in poultry: the case of vitamin E

Surai PF, Kochish II, Romanov MN, Griffin DK

Poult Sci. 2019 Feb 26. pii: pez072. doi: 10.3382/ps/pez072. [Epub ahead of print]


Commercial poultry production is associated with a range of stresses, including environmental, technological, nutritional, and internal/biological ones, responsible for decreased productive and reproductive performance of poultry. At the molecular level, most of them are associated with oxidative stress and damages to important biological molecules. Poultry feed contains a range of feed-derived and supplemented antioxidants and, among them, vitamin E is considered as the “headquarters” of the antioxidant defense network. It is well-established that dietary supplementation of selenium, vitamin E, and carotenoids can modulate antioxidant defenses in poultry. The aim of the present paper is to present evidence related to modulation of the antioxidant capacities in poultry by vitamin E. Using 3 model systems including poultry breeders/males, semen, and chicken embryo/postnatal chickens, the possibility of modulation of the antioxidant defense mechanisms has been clearly demonstrated. It was shown that increased vitamin E supplementation in the breeder’s or cockerel’s diet increased their resistance to various stresses, including high polyunsaturated fatty acids (PUFA), mycotoxin, or heat stress. Increased vitamin E supplementation of poultry males was shown to be associated with significant increases in α-tocopherol level in semen associated with an increased resistance to oxidative stress imposed by various external stressors. Similarly, increased vitamin E concentration in the egg yolk due to dietary supplementation was shown to be associated with increased α-tocopherol concentration in the tissues of the developing embryos and newly hatched chicks resulting in increased antioxidant defenses and decreased lipid peroxidation. Furthermore, increased vitamin E transfer from the feed to egg yolk and further to the developing embryo was shown to be associated with upregulation of antioxidant enzymes reflecting antioxidant system regulation and adaptation. The role of vitamin E in cell signaling and gene expression as well as in interaction with microbiota and maintaining gut health in poultry awaits further investigation.

Read More

Page 3 of 10912345...102030...Last »