Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms

Jiang Q

IUBMB Life. 2018 Dec 11. doi: 10.1002/iub.1978. [Epub ahead of print]

Abstract

The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13′-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13′-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy.

Read More

δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice.

Wang H, Yang X, Liu A, Wang G, Bosland MC, Yang CS

Carcinogenesis. 2018 Feb 9;39(2):158-169. doi: 10.1093/carcin/bgx128.

Abstract

The PTEN/PI3K/AKT axis plays a critical role in regulating cell growth, differentiation and survival. Activation of this signaling pathway is frequently found in human cancers. Our previous studies demonstrated that δ-tocopherol (δ-T) attenuates the activation of AKT by growth factor in prostate cancer cell lines, leading to inhibition of proliferation and induction of apoptosis. Herein, we investigated whether δ-T inhibits the development of prostate adenocarcinoma in prostate-specific Pten-/- (Ptenp-/-) mice in which the activation of AKT is the major driving force for tumorigenesis. By feeding Ptenp-/- mice with AIN93M or 0.2% δ-T supplemented diet starting at the age of 6 or 12 weeks, we found that δ-T treatment reduced prostate adenocarcinoma multiplicity at the age of 40 weeks by 53.3 and 42.7%, respectively. Immunohistochemical (IHC) analysis demonstrated that the phosphorylation of AKT (T308) was reduced in the prostate of the mice administered the δ-T diet. Consistently, proliferation was reduced and apoptosis was increased in prostate lesions of mice on the δ-T diet. Oxidative stress, as determined by IHC staining of 8-OH-dG, was not altered during prostate tumorigenesis, nor was it affected by administration of δ-T. In contrast, α-tocopherol (α-T) at 0.2% in the diet did not affect prostate adenocarcinoma multiplicity in the Ptenp-/- mice. This finding is consistent with data from our previous study that δ-T, but not α-T, inhibits the activation of AKT and the growth of prostate cancer cells. Together, these results demonstrate that δ-T inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, mainly through inhibition of AKT activation.

Read More

Combination Effect of δ-Tocotrienol and γ-Tocopherol on Prostate Cancer Cell Growth.

Sato C, Kaneko S, Sato A, Virgona N, Namiki K, Yano T

J Nutr Sci Vitaminol (Tokyo). 2017;63(5):349-354. doi: 10.3177/jnsv.63.349.

Abstract

Tocotrienols (T3s) and tocopherols (Tocs) are both members of the vitamin E family. It is known that δ-tocotrienol (δ-T3) has displayed the most potent anti-cancer activity amongst the tocotrienols. On the other hand, γ-tocopherol (γ-Toc) is reported to have a protective effect against prostate cancer. Therefore, we investigated whether the combination of γ-Toc and δ-T3 could strengthen the inhibitory effect of δ-T3 on prostate cancer cell growth. In this study the effect of combined δ-T3 (annatto T3 oil) and γ-Toc (Tmix, γ-Toc-rich oil) therapy was assessed against human androgen-dependent prostate cancer cells (LNCaP). We found that combined treatment of δ-T3 (10 μM) and γ-Toc (5 μM) resulted in reinforced anti-prostate cancer activity. Specifically, cell cycle phase distribution analysis revealed that in addition to G1 arrest caused by the treatment with δ-T3, the combination of δ-T3 with γ-Toc induced G2/M arrest. Enhanced induction of apoptosis by the combined treatment was also observed. These findings indicate that combination of δ-T3 and γ-Toc significantly inhibits prostate cancer cell growth due to the simultaneous cell cycle arrest in the G1 phase and G2/M phase.

Read More

δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice.

Wang H, Yang X, Liu A, Wang G, Bosland MC, Yang CS

Carcinogenesis. 2017 Nov 7. doi: 10.1093/carcin/bgx128.

Abstract

The PTEN/PI3K/AKT axis plays a critical role in regulating cell growth, differentiation and survival. Activation of this signaling pathway is frequently found in human cancers. Our previous studies demonstrated that δ-tocopherol (δ-T) attenuates the activation of AKT by growth factor in prostate cancer cell lines, leading to inhibition of proliferation and induction of apoptosis. Herein, we investigated whether δ-T inhibits the development of prostate adenocarcinoma in prostate-specific Pten-/- (Ptenp-/-) mice in which the activation of AKT is the major driving force for tumorigenesis. By feeding Ptenp-/- mice with AIN93M or 0.2% δ-T supplemented diet starting at the age of 6 or 12 weeks, we found that δ-T treatment reduced prostate adenocarcinoma multiplicity at the age of 40 weeks by 53.3% and 42.7%, respectively. Immunohistochemical analysis demonstrated that the phosphorylation of AKT(T308) was reduced in the prostate of the mice administered the δ-T diet. Consistently, proliferation was reduced and apoptosis was increased in prostate lesions of mice on the δ-T diet. Oxidative stress, as determined by immunohistochemical staining of 8-OH-dG, was not altered during prostate tumorigenesis, nor was it affected by administration of δ-T. In contrast, α-tocopherol (δ-T) at 0.2% in the diet did not affect prostate adenocarcinoma multiplicity in the Ptenp-/- mice. This finding is consistent with data from our previous study that δ-T, but not δ-T, inhibits the activation of AKT and the growth of prostate cancer cells. Together, these results demonstrate that δ-T inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, mainly through inhibition of AKT activation.

Read More

Synergistic Impact of d-δ-Tocotrienol and Geranylgeraniol on the Growth and HMG CoA Reductase of Human DU145 Prostate Carcinoma Cells.

Yeganehjoo H, DeBose-Boyd R, McFarlin BK, Mo H

Nutr Cancer. 2017 May-Jun;69(4):682-691. doi: 10.1080/01635581.2017.1299876. Epub 2017 Mar 31.

Abstract

The growth-suppressive effect of d-δ-tocotrienol and geranylgeraniol is at least partially attributed to their impact on 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway that provides essential intermediates for the posttranslational modification of growth-related proteins including RAS. We hypothesize that these agents synergistically impact cell growth based on their complementary mechanisms of action with HMG CoA reductase. d-δ-tocotrienol (0-40 µmol/L; half maximal inhibitory concentration [IC50] = 15 µmol/L) and geranylgeraniol (0-100 µmol/L; IC50 = 60 µmol/L) each induced concentration-dependent suppression of the growth of human DU145 prostate carcinoma cells. Blends of the two agents synergistically suppressed the growth of DU145 cells, with combination index values ranging 0.67-0.75. While 7.5 µmol/L d-δ-tocotrienol and 30 µmol/L geranylgeraniol individually had no impact on cell cycle distribution in DU145 cells, a blend of the agents induced cell cycle arrest at the G1 phase. The synergistic downregulation of the expression of HMG CoA reductase by 7.5 µmol/L d-δ-tocotrienol and 30 µmol/L geranylgeraniol was accompanied by a reduction in membrane K-RAS protein. Our finding supports the cancer chemopreventive action of plant-based diets and their isoprenoid constituents. Properly formulated isoprenoids and derivatives may provide novel approaches in prostate cancer prevention and therapy.

Read More

Inhibitory effect of a redox-silent analogue of tocotrienol on hypoxia adaptation in prostate cancer cells.

Shiozawa N, Sugahara R, Namiki K, Sato C, Ando A, Sato A, Virgona N, Yano T.

Anticancer Drugs. 2017 Mar;28(3):289-297. doi: 10.1097/CAD.0000000000000460.

Abstract

Prostate cancer (PCa) is one of the most common cancers in Western countries and acquires a malignant phenotype, androgen-independent growth. PCa under hypoxia often has resistance to chemotherapy and radiotherapy. However, an effective therapy against PCa under hypoxia has not yet been established. In this report, we investigated the inhibitory effect of a redox-silent analogue of tocotrienol on the survival of a human androgen-independent PCa cell line (PC3) under hypoxia. We found that the redox-silent analogue exerted a cytotoxic effect on PC3 cells in a dose-dependent manner irrespective of either hypoxia or normoxia. Moreover, under hypoxia, the analogue dose dependently reduced the protein levels of hypoxia-inducible factor (HIF)-1α and HIF-2α. In addition, a specific inhibitor toward HIF-1α induced cytotoxicity on PC3 cells, whereas selective inhibition of HIF-2α exerted no effect. Furthermore, suppression of HIFs levels by the analogue in hypoxic PC3 cells was closely associated with the inactivation of Fyn, a member of the nonreceptor tyrosine kinase family, as confirmed by the action of a specific inhibitor toward the kinase (PP2). Taken together, these results suggest that the tocotrienol analogue could inhibit the survival of PC3 cells under hypoxia, mainly by the inhibition of Fyn/HIF-1α signaling, and this may lead to the establishment of a new effective therapy for androgen-independent PCa.

Read More

A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27.

Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN.

J Nutr Biochem. 2017 Feb;40:155-163. doi: 10.1016/j.jnutbio.2016.10.019. Epub 2016 Nov 4.

Abstract

Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.

Read More

Inhibitory effect of a redox-silent analogue of tocotrienol on hypoxia adaptation in prostate cancer cells.

Shiozawa N, Sugahara R, Namiki K, Sato C, Ando A, Sato A, Virgona N, Yano T.

Anticancer Drugs. 2016 Dec 6. [Epub ahead of print]

Abstract

Prostate cancer (PCa) is one of the most common cancers in Western countries and acquires a malignant phenotype, androgen-independent growth. PCa under hypoxia often has resistance to chemotherapy and radiotherapy. However, an effective therapy against PCa under hypoxia has not yet been established. In this report, we investigated the inhibitory effect of a redox-silent analogue of tocotrienol on the survival of a human androgen-independent PCa cell line (PC3) under hypoxia. We found that the redox-silent analogue exerted a cytotoxic effect on PC3 cells in a dose-dependent manner irrespective of either hypoxia or normoxia. Moreover, under hypoxia, the analogue dose dependently reduced the protein levels of hypoxia-inducible factor (HIF)-1α and HIF-2α. In addition, a specific inhibitor toward HIF-1α induced cytotoxicity on PC3 cells, whereas selective inhibition of HIF-2α exerted no effect. Furthermore, suppression of HIFs levels by the analogue in hypoxic PC3 cells was closely associated with the inactivation of Fyn, a member of the nonreceptor tyrosine kinase family, as confirmed by the action of a specific inhibitor toward the kinase (PP2). Taken together, these results suggest that the tocotrienol analogue could inhibit the survival of PC3 cells under hypoxia, mainly by the inhibition of Fyn/HIF-1α signaling, and this may lead to the establishment of a new effective therapy for androgen-independent PCa.

Read More

δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

Wang H, Hong J, Yang CS.

Mol Carcinog. 2016 Nov;55(11):1728-1738. doi: 10.1002/mc.22422.

Abstract

The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin Eforms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T.

Read More

A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27.

Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN.

J Nutr Biochem. 2016 Nov 4;40:155-163. doi: 10.1016/j.jnutbio.2016.10.019. [Epub ahead of print]

Abstract

Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.

Read More

Page 1 of 3123