Upregulation of pERK and c-JUN by γ-Tocotrienol and Not α-Tocopherol Are Essential to the Differential Effect on Apoptosis in Prostate Cancer Cells

Christine Moore, Victoria E Palau, Rashid Mahboob, Janet Lightner, William Stone, Koyamangalath Krishnan

BMC Cancer . 2020 May 15;20(1):428. doi: 10.1186/s12885-020-06947-6.

Abstract

Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3.

Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays measuring ATP. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control.

Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-JUN was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT.

Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.

Read More

γ-Tocotrienol and α-Tocopherol Ether Acetate Enhance Docetaxel Activity in Drug-Resistant Prostate Cancer Cells

Asay S, Graham A, Hollingsworth S, Barnes B, Oblad RV, Michaelis DJ, Kenealey JD

Molecules. 2020 Jan 18;25(2). pii: E398. doi: 10.3390/molecules25020398.

Abstract

Prostate cancer is the second most commonly diagnosed cancer in men, and metastatic prostate cancer is currently incurable. Prostate cancer frequently becomes resistant to standard of care treatments, and the administration of chemotherapeutic drugs is often accompanied by toxic side effects. Combination therapy is one tool that can be used to combat therapeutic resistance and drug toxicity. Vitamin E (VE) compounds and analogs have been proposed as potential non-toxic chemotherapeutics. Here we modeled combination therapy using mixture design response surface methodology (MDRSM), a statistical technique designed to optimize mixture compositions, to determine whether combinations of three chemotherapeutic agents: γ-tocotrienol (γ-T3), α-tocopherol ether acetate (α-TEA), and docetaxel (DOC), would prove more effective than docetaxel alone in the treatment of human prostate cancer cells. Response surfaces were generated for cell viability, and the optimal treatment combination for reducing cell viability was calculated. We found that a combination of 20 µM γ-T3, 30 µM α-TEA, and 25 nm DOC was most effective in the treatment of PC-3 cells. We also found that the combination of γ-T3 and α-TEA with DOC decreased the amount of DOC required to reduce cell viability in PC-3 cells and ameliorated therapeutic resistance in DOC-resistant PC-3 cells.

Read More

Combination Effect of Bowman-Birk Inhibitor and α-Tocopheryl Succinate on Prostate Cancer Stem-Like Cells

Kaneko S, Yamazaki T, Kohno K, Sato A, Kato K, Yano T

J Nutr Sci Vitaminol (Tokyo). 2019;65(3):272-277. doi: 10.3177/jnsv.65.272.

Abstract

The reoccurrence of androgen-dependent prostate cancer after anti-androgen therapy mainly depends on prostate cancer stem-like cells. To reduce the risk, it is important to delete the cancer stem-like cells. Furthermore, to induce differentiation of cancer stem-like cells is critical to abrogate stemness of the cells. Therefore, we tried to investigate a possibility on the establishment of a new effective therapy to eradicate the cancer stem-like cells via the induction of differentiation in this study. Prostate cancer stem-like cells from an androgen-dependent prostate cancer cell line (LNCaP cell) had severe resistance against an anti-androgen therapeutic agent. We selected Bowman-Birk inhibitor (BBI) from soybeans reported as a chemopreventive agent in prostate cancer to differentiate the caner stem-like cells and α-tocopheryl succinate (TOS) known as a mitocan to induce effectively cytotoxic effect against the cancer stem-like cells. In fact, only TOS treatment had cytotoxic effect against the cancer stem-like cells, but the addition of BBI treatment to the cells treated with TOS reinforced TOS-mediated cytotoxicity in the cancer stem-like cells. This reinforcement coincided with the combination-enhanced apoptosis in the stem-like cells. Also, we confirmed caspase9-caspase3 cascade mainly contributed to the enhancement of the cytotoxicity in the stem-like cells caused by the combination, indicating that the reinforcement of BBI on TOS-mediated apoptosis via mitochondria related to the enhancing cytotoxic effect of the combination on the prostate cancer stem-like cells. Overall, it seems that the combination is an effective new approach to reduce the reoccurrence of prostate cancer targeting prostate cancer stem cells.

Read More

Synergistic Impact of Xanthorrhizol and d-δ-tocotrienol on the Proliferation of Murine B16 Melanoma Cells and Human DU145 Prostate Carcinoma Cells (P06-042-19)

Beebe M, Najjar R, Chan D, Madhani C, Elfakhani M, Yount S, Ji X, Feresin R, Wanders D, Mo H

Curr Dev Nutr. 2019 Jun 13;3(Suppl 1). pii: nzz031.P06-042-19. doi: 10.1093/cdn/nzz031.P06-042-19. eCollection 2019 Jun.

Abstract

OBJECTIVES:

Xanthorrhizol, a sesquiterpene, and d-δ-tocotrienol, a vitamin E molecule, each suppresses the proliferation of a number of tumor cells. This study aims to examine the potentially synergistic effect of xanthorrhizol and d-δ-tocotrienol in tumor cells.

METHODS:

Murine B16 melanoma and human DU145 prostate carcinoma cells were incubated for 48 h (B16) or 72 h (DU145) with xanthorrhizol or d-δ-tocotrienol before cell populations were determined by CellTiter 96â Aqueous One Solution. Cells incubated with the agents for 24 hours were stained with propidium iodide and analyzed for cell cycle using flow cytometry and MultiCycle AV. Isobologram and combination index (CI) were used to demonstrate their synergistic anti-proliferative impacts.

RESULTS:

Xanthorrhizol (0-200 µmol/L) and d-δ-tocotrienol (0-40 µmol/L) each elicited a concentration-dependent suppression of the proliferation of B16 cells. A blend of 16.25 µmol/L xanthorrhizol and 10 µmol/L d-δ-tocotrienol achieved 69% (P < 0.05) growth suppression of B16 cells, exceeding the sum of individual effects. B16 cells incubated with 5 and 10 µmol/L d-δ-tocotrienol for 24-h had a concentration-dependent increase in the percentage of cells in the G1 phase with a concomitant decrease in the percentage of cells in the S phase. The G1/S ratio, an indicator of cell cycle arrest at the G1 phase, increased from 1.73 ± 0.05 (Control) to 2.01 ± 0.10 (5 µmol/L) and 2.73 ± 0.05 (10 µmol/L). A parallel pattern of concentration-dependent increase in the G1/S ratio was induced by xanthorrhizol at concentrations equivalent to 25% (16.25 µmol/L) and 50% (32.5 µmol/L) of its IC50 value. A blend of 5 µmol/L d-δ-tocotrienol and 16.25 µmol/L xanthorrhizol, each at no-effect concentrations, significantly increased the percentage of B16 cells in the G1 phase to 62.6 ± 0.6%. Isobologram and CI confirmed the synergistic effect of xanthorrhizol (50 and 100 μmol/L) and d-δ-tocotrienol (10 and 20 μmol/L) on the proliferation of DU145 cells.

CONCLUSIONS:

Xanthorrhizol and d-δ-tocotrienol synergistically suppress tumor cell proliferation by inducing G1 arrest and may have potential in cancer prevention and therapy.

Read More

Gamma-Tocotrienol Induces Apoptosis in Prostate Cancer Cells by Targeting the Ang-1/Tie-2 Signalling Pathway

Tang KD, Liu J, Russell PJ, Clements JA, Ling MT

Int J Mol Sci. 2019 Mar 7;20(5). pii: E1164. doi: 10.3390/ijms20051164.

Abstract

Emerging evidence suggests that gamma-tocotrienol (γ-T3), a vitamin E isomer, has potent anti-cancer properties against a wide-range of cancers. γ-T3 not only inhibited the growth and survival of cancer cells in vitro, but also suppressed angiogenesis and tumour metastasis under in vivo conditions. Recently, γ-T3 was found to target cancer stem cells (CSCs), leading to suppression of tumour formation and chemosensitisation. Despite its promising anti-cancer potential, the exact mechanisms responsible for the effects of γ-T3 are still largely unknown. Here, we report the identification of Ang-1 (Angiopoietin-1)/Tie-2 as a novel γ-T3 downstream target. In prostate cancer cells, γ-T3 treatment leads to the suppression of Ang-1 at both the mRNA transcript and protein levels. Supplementing the cells with Ang-1 was found to protect them against the anti-CSC effect of γ-T3. Intriguingly, inactivation of Tie-2, a member receptor that mediates the effect of Ang-1, was found to significantly enhance the cytotoxic effect of γ-T3 through activation of AMP-activated protein kinase (AMPK) and subsequent interruption of autophagy. Our results highlighted the therapeutic potential of using γ-T3 in combination with a Tie-2 inhibitor to treat advanced prostate cancer.

Read More

δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells

Fontana F, Moretti RM, Raimondi M, Marzagalli M, Beretta G, Procacci P, Sartori P, Montagnani Marelli M, Limonta P

Cell Prolif. 2019 Feb 4:e12576. doi: 10.1111/cpr.12576. [Epub ahead of print]

Abstract

OBJECTIVES:

Prostate cancer, after the phase of androgen dependence, may progress to the castration-resistant prostate cancer (CRPC) stage, with resistance to standard therapies. Vitamin E-derived tocotrienols (TTs) possess a significant antitumour activity. Here, we evaluated the anti-cancer properties of δ-TT in CRPC cells (PC3 and DU145) and the related mechanisms of action.

MATERIALS AND METHODS:

MTT, Trypan blue and colony formation assays were used to assess cell viability/cell death/cytotoxicity. Western blot, immunofluorescence and MTT analyses were utilized to investigate apoptosis, ER stress and autophagy. Morphological changes were investigated by light and transmission electron microscopy.

RESULTS:

We demonstrated that δ-TT exerts a cytotoxic/proapoptotic activity in CRPC cells. We found that in PC3 cells: (a) δ-TT triggers both the endoplasmic reticulum (ER) stress and autophagy pathways; (b) autophagy induction is related to the ER stress, and this ER stress/autophagy axis is involved in the antitumour activity of δ-TT; in autophagy-defective DU145 cells, only the ER stress pathway is involved in the proapoptotic effects of δ-TT; (c) in both CRPC cell lines, δ-TT also induces an intense vacuolation prevented by the ER stress inhibitor salubrinal and the protein synthesis inhibitor cycloheximide, together with increased levels of phosphorylated JNK and p38, supporting the induction of paraptosis by δ-TT.

CONCLUSIONS:

These data demonstrate that apoptosis, involving ER stress and autophagy (in autophagy positive PC3 cells), and paraptosis are involved in the anti-cancer activity of δ-TT in CRPC cells.

Read More

Molecular Mechanisms of Action of Tocotrienols in Cancer: Recent Trends and Advancements

Aggarwal V, Kashyap D, Sak K, Tuli HS, Jain A, Chaudhary A, Garg VK, Sethi G, Yerer MB

Int J Mol Sci. 2019 Feb 2;20(3). pii: E656. doi: 10.3390/ijms20030656.

Abstract

Tocotrienols, found in several natural sources such as rice bran, annatto seeds, and palm oil have been reported to exert various beneficial health promoting properties especially against chronic diseases, including cancer. The incidence of cancer is rapidly increasing around the world not only because of continual aging and growth in global population, but also due to the adaptation of Western lifestyle behaviours, including intake of high fat diets and low physical activity. Tocotrienols can suppress the growth of different malignancies, including those of breast, lung, ovary, prostate, liver, brain, colon, myeloma, and pancreas. These findings, together with the reported safety profile of tocotrienols in healthy human volunteers, encourage further studies on the potential application of these compounds in cancer prevention and treatment. In the current article, detailed information about the potential molecular mechanisms of actions of tocotrienols in different cancer models has been presented and the possible effects of these vitamin E analogues on various important cancer hallmarks, i.e., cellular proliferation, apoptosis, angiogenesis, metastasis, and inflammation have been briefly analyzed.

Read More

Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms

Jiang Q

IUBMB Life. 2018 Dec 11. doi: 10.1002/iub.1978. [Epub ahead of print]

Abstract

The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13′-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13′-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy.

Read More

δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice.

Wang H, Yang X, Liu A, Wang G, Bosland MC, Yang CS

Carcinogenesis. 2018 Feb 9;39(2):158-169. doi: 10.1093/carcin/bgx128.

Abstract

The PTEN/PI3K/AKT axis plays a critical role in regulating cell growth, differentiation and survival. Activation of this signaling pathway is frequently found in human cancers. Our previous studies demonstrated that δ-tocopherol (δ-T) attenuates the activation of AKT by growth factor in prostate cancer cell lines, leading to inhibition of proliferation and induction of apoptosis. Herein, we investigated whether δ-T inhibits the development of prostate adenocarcinoma in prostate-specific Pten-/- (Ptenp-/-) mice in which the activation of AKT is the major driving force for tumorigenesis. By feeding Ptenp-/- mice with AIN93M or 0.2% δ-T supplemented diet starting at the age of 6 or 12 weeks, we found that δ-T treatment reduced prostate adenocarcinoma multiplicity at the age of 40 weeks by 53.3 and 42.7%, respectively. Immunohistochemical (IHC) analysis demonstrated that the phosphorylation of AKT (T308) was reduced in the prostate of the mice administered the δ-T diet. Consistently, proliferation was reduced and apoptosis was increased in prostate lesions of mice on the δ-T diet. Oxidative stress, as determined by IHC staining of 8-OH-dG, was not altered during prostate tumorigenesis, nor was it affected by administration of δ-T. In contrast, α-tocopherol (α-T) at 0.2% in the diet did not affect prostate adenocarcinoma multiplicity in the Ptenp-/- mice. This finding is consistent with data from our previous study that δ-T, but not α-T, inhibits the activation of AKT and the growth of prostate cancer cells. Together, these results demonstrate that δ-T inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, mainly through inhibition of AKT activation.

Read More

Combination Effect of δ-Tocotrienol and γ-Tocopherol on Prostate Cancer Cell Growth.

Sato C, Kaneko S, Sato A, Virgona N, Namiki K, Yano T

J Nutr Sci Vitaminol (Tokyo). 2017;63(5):349-354. doi: 10.3177/jnsv.63.349.

Abstract

Tocotrienols (T3s) and tocopherols (Tocs) are both members of the vitamin E family. It is known that δ-tocotrienol (δ-T3) has displayed the most potent anti-cancer activity amongst the tocotrienols. On the other hand, γ-tocopherol (γ-Toc) is reported to have a protective effect against prostate cancer. Therefore, we investigated whether the combination of γ-Toc and δ-T3 could strengthen the inhibitory effect of δ-T3 on prostate cancer cell growth. In this study the effect of combined δ-T3 (annatto T3 oil) and γ-Toc (Tmix, γ-Toc-rich oil) therapy was assessed against human androgen-dependent prostate cancer cells (LNCaP). We found that combined treatment of δ-T3 (10 μM) and γ-Toc (5 μM) resulted in reinforced anti-prostate cancer activity. Specifically, cell cycle phase distribution analysis revealed that in addition to G1 arrest caused by the treatment with δ-T3, the combination of δ-T3 with γ-Toc induced G2/M arrest. Enhanced induction of apoptosis by the combined treatment was also observed. These findings indicate that combination of δ-T3 and γ-Toc significantly inhibits prostate cancer cell growth due to the simultaneous cell cycle arrest in the G1 phase and G2/M phase.

Read More

Page 1 of 41234