De Novo High-Titer Production of Delta-Tocotrienol in Recombinant Saccharomyces cerevisiae

Hong Sun, Jingli Yang, Xue Lin, Congfa Li, Yongjin He, Zhigang Cai, Guoyin Zhang, Hao Song


Delta-tocotrienol as a vitamin E isomer has received much attention because of its diverse biomedical applications. Microbial biosynthesis of delta-tocotrienol is a promising strategy for its economic and environmental advantages. Here, we accomplished complete biosynthesis of delta-tocotrienol in Saccharomyces cerevisiae from glucose. We first constructed and incorporated a heterologous pathway into the genome of S. cerevisiae by incorporating the genes hpd (from Pseudomonas putida KT2440), hpt (from Synechocystis sp. PCC 6803), and vte1 (from Arabidopsis thaliana) for the biosynthesis of delta-tocotrienol. We further enhanced the biosynthesis of the precursor geranylgeranyl diphosphate by overexpressing the thmg1 and ggppssa (from Sulfolobus acidocaldarius) genes, leading to a production titer of delta-tocotrienol of 1.39 ± 0.01 mg/L. Finally, we optimized the fermentation medium using the response surface methodology, enabling a high-titer production of delta-tocotrienol (3.56 ± 0.25 mg/L), ∼2.6-fold of that of the initial culture medium. Fed-batch fermentation in a 2 L fermenter was further used to enhance the production titer of delta-tocotrienol (4.10 ± 0.10 mg/L). To the best of our knowledge, this is the first report on the de novo biosynthesis of delta-tocotrienol in S. cerevisiae, and the highest titer obtained for microbial production of delta-tocotrienol.

Read More