The oil palm (Elaeis guineensis) is native to many West African countries, where local populations have used its oil for culinary and other purposes. Large-scale plantations, established principally in tropical regions (Asia, Africa and Latin America), are mostly aimed at the production of oil, which is extracted from the fleshy mesocarp of the palm fruit, and endosperm or kernel oil. Palm oil is different from other plant and animal oils in that it contains 50% saturated fatty acids, 40% unsaturated fatty acids, and 10% polyunsaturated fatty acids. The fruit also contains components that can endow the oil with nutritional and health beneficial properties. These phytonutrients include carotenoids (alpha-,beta-,and gamma-carotenes), vitamin E (tocopherols and tocotrienols), sterols (sitosterol, stigmasterol and campesterol), phospholipids, glycolipids and squalene. In addition, it is recently reported that certain water-soluble powerful antioxidants, phenolic acids and flavonoids, can be recovered from palm oil mill effluent. Owing to its high content of phytonutrients with antioxidant properties, the possibility exists that palm fruit offers some health advantages by reducing lipid oxidation, oxidative stress and free radical damage. Accordingly, use of palm fruit or its phytonutrient-rich fractions, particularly water-soluble antioxidants, may confer some protection against a number of disorders or diseases including cardiovascular disease, cancers, cataracts and macular degeneration, cognitive impairment and Alzheimer’s disease. However, whilst prevention of disease through use of these phytonutrients as in either food ingredients or nutraceuticals may be a worthwhile objective, dose response data are required to evaluate their pharmacologic and toxicologic effects. In addition, one area of concern about use of antioxidant phytonutrients is how much suppression of oxidation may be compatible with good health, as toxic free radicals are required for defence mechanisms. These food-health concepts would probably spur the large-scale oil palm (and monoculture) plantations, which are already seen to be a major cause of deforestation and replacement of diverse ecosystems in many countries. However, the environmental advantages of palm phytonutrients are that they are prepared from the readily available raw material from palm oil milling processes. Palm fruit, one of only a few fatty fruits, is likely to have an increasingly substantiated place in human health, not only through the provision of acceptable dietary fats, but also its characteristic protective phytonutrients.

The palm fruit (Elaies guineensis) yields palm oil, a palmitic-oleic rich semi solid fat and the fat-soluble minor components, vitamin E (tocopherols,tocotrienols), carotenoids and phytosterols. A recent innovation has led to the recovery and concentration of water-soluble antioxidants from palm oil milling waste, characterized by its high content of phenolic acids and flavonoids. These natural ingredients pose both challenges and opportunities for the food and nutraceutical industries. Palm oil’s rich content of saturated and monounsaturated fatty acids has actually been turned into an asset in view of current dietary recommendations aimed at zero trans content in solid fats such as margarine, shortenings and frying fats. Using palm oil in combination with other oils and fats facilitates the development of a new generation of fat products that can be tailored to meet most current dietary recommendations. The wide range of natural palm oil fractions, differing in their physico-chemical characteristics, the most notable of which is the carotenoid-rich red palm oil further assists this. Palm vitamin E (30% tocopherols, 70% tocotrienols) has been extensively researched for its nutritional and health properties, including antioxidant activities, cholesterol lowering, anti-cancer effects and protection against atherosclerosis. These are attributed largely to its tocotrienol content. A relatively new output from the oil palm fruit is the water-soluble phenolic-flavonoid-rich antioxidant complex. This has potent antioxidant properties coupled with beneficial effects against skin, breast and other cancers. Enabled by its water solubility, this is currently being tested for use as nutraceuticals and in cosmetics with potential benefits against skin aging. A further challenge would be to package all these palm ingredients into a single functional food for better nutrition and health.

Background: The uptake and biotransformation of γ-tocopherol (γ-T) in humans is largely unknown. Using a stable isotope method we investigated these aspects of γ-T biology in healthy volunteers and their response to r-T supplementation.

 

Method: A single bolus of 100mg of deuterium labeled γ-T acetate (d2-γ-TAC, 94% isotopic purity) was administered with a standard meal to 21 healthy subjects. Blood and urine (first morning void) were collected at baseline and a range of time points between 6 and 240h post-supplementation. The concentrations of d2 and d0-γ-T in plasma and its major metabolite 2,7,8-trimethyl-2-(b-carboxyethyl)-6-hydroxychroman (γ-CEHC) in plasma and urine were measured by GC-MS. In two subjects, the total urine volume was collected for 72h post supplementation. The effects of γ-T supplementation on a- concentrations in plasma and α-T and γ-T  metabolite formation were also assessed by HPLC or GC-MS analysis.

 

Results: At baseline, mean plasma α-T concentration was approximately 15 times higher than γ-T (28.3 vs 1.9µmol/l). In contrast, plasma γ-CEHC concentration (0.191µmol/l) was 12 fold greater than α-CEHC (0.016µmol/l) while in urine it was 3.5 fold lower (0.82 and 2.87 µmol, respectively) suggesting that the clearance of α-CEHC from plasma was more than 40 times that of γ-CEHC. After d2-γ-TAC administration, the d2 forms of γ-T and γ-CEHC in plasma and urine increased ,but with markedly inter-individual variability, while the d0 species were hardy affected. Mean total concentrations of γ-T and γ-CEHC in plasma peaked, respectively, between 0-9, 6-12 and 9-24h post supplementation with increases over baseline levels of 6-14 fold. All these parameters returned to baseline by 72h. following challenge, the total urinary excretion of d2-γ-T equivalents was approximately 7mg. Baseline levels of γ-T correlated positively with the post-supplementation rise of (d0 + d2) –γ-T and γ-CEHC level in plasma, but correlated negatively with urinary levels of (d0+d2)-γ-CEHC. Supplementation with 100mg γ-TAC had minimal influence on plasma concentrations of α-T and α-T related metabolite formation and excretion.

 

Conclusion: Ingestion of 100mg of γ-TA transiently increases plasma concentrations of r-T as it undergoes sustained catabolism to CEHC without markedly influencing the pre-existing plasma pool of γ-T nor the concentration and metabolism of α-T. These pathways appear tightly regulated, most probably to keep high steady-state blood ratios α-T to γ-T and γ-CEHC to α-CEHC.