Influence of palm oil on doxorubicin induced cytotoxicity in normal and tumor cell cultures

Postescu ID, Virag P, Achim M, Fischer-Fodor E.

Phytother Res. 2010 Jan;24(1):154-6.

The vitamin E of palm oil, unlike most other vegetal fats, consists largely of tocotrienols (TT), products previously reported as having antioxidant and tumor-inhibitory properties. A tocotrienols containing palm oil, in the form of liposomes entrapping dosages of 0.5-0.05 microgTT/mL, was studied in combined treatments with doxorubicin (30 min before drug administration). The IC(50) values of doxorubicin, at 24 h, showed that its cytotoxic effects were decreased by palm oil, in a dose effect relationship (p < 0.01, ANOVA), in both normal (Hfl-1, Huvec) and tumor (HepG2, Mls) cells. These results demonstrated an unselective protective activity of tocotrienols, in vitro, on some normal and tumor cultured cells treated with doxorubicin.

Tocotrienols are good adjuvants for developing cancer vaccines

Hafid SR, Radhakrishnan AK, Nesaretnam K.

BMC Cancer. 2010 Jan 6;10:5.

Background: Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.

Methods: In this study we have used tocotrienol-rich fraction (TRF), a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF) and DC pulsed with tumour lysate from 4T1 cells (DC+TL). Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF) while two groups of animal which were supplemented daily with carrier oil (control) and with TRF (TRF). After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour.

Results: Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF) injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-gamma and IL-12 in experimental mice (DC+TL+TRF) compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8) and natural killer cells (NK) were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice.

Conclusion: Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.

Read Full Article Here

Gamma-tocotrienol prevents oxidative stress-induced telomere shortening in human fibroblasts derived from different aged individuals

Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ.

Oxid Med Cell Longev. 2010 Jan-Feb;3(1):35-43.

The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienolprevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.

Read Full Article Here

A method for the determination of tocopherols and tocotrienols in vegetable oils by nanoliquid chromatography with UV-vis detection has been developed. The separation of tocopherols was optimized in terms of mobile phase composition on the basis of the best compromise between efficiency, resolution, and analysis time. The optimal conditions were achieved using a C18 silica monolithic column (150 mm x 0.1 mm) with an isocratic elution of acetonitrile/methanol/water (acidified with 0.2% acetic acid) at a flow rate of 0.5 microL min(-1), giving a total analysis time below 18 min. The method has been applied to the quantification of tocopherols and tocotrienols present in several vegetable oils with different botanical origins.